I think the correct answer from the choices listed above is option D. One advantage of using electromagnets in devices would be that electromagnets can <span>easily be turned on and off. Hope this answers the question. Have a nice day.</span>
Answer: b) they are the areas where Earth's magnetic field is weakest
Explanation:
According to classical physics, a magnetic field always has two associated magnetic poles (north and south), the same happens with magnets. This is because for <em>classical physics</em>, naturally, magnetic monopoles can not exist.
In this context, Earth is similar to a magnetic bar with a north pole and a south pole. This means, the axis that crosses the Earth from pole to pole is like a big magnet.
Now, by convention, on all magnets the north pole is where the magnetic lines of force leave the magnet and the south pole is where the magnetic lines of force enter the magnet. Then, for the case of the Earth, the north pole of the magnet is located towards the geographic south pole and the south pole of the magnet is near the geographic north pole.
Being the magnetic poles the places where the Earth's magnetic field is weakest. And it is for this reason, moreover, that the magnetic field lines enter the Earth through its magnetic south pole (which is the geographic north pole).
Answer:
Pressure (P) is the amount of force applied perpendicular to the surface of an object per unit area. The SI unit of pressure is the pascal (Pa), which is equivalent to N/
(newtons per meter squared).
Different: The weak nuclear force is responsible for radioactive decay within an atom of a substance, while the electromagnetic force causes electrostatic force between charged particles.
Different: The weak force has a very small range of effectiveness (where the force can be felt) while the electromagnetic force has an infinite range.
Same: Both forces act within an nucleus, or on a nuclear level.
Same: The weak nuclear force is mediated by charged particles called bosons, and the electrostatic force is only present within charged objects
The last one may be a bit of a stretch but I hope this helped a bit!