Answer:
a. alkyne
b. alkane
c. alkyne
d. alkene
Explanation:
The general formula for each class of compound is given below
Alkane: 
Alkene: 
Alkyne:
(assuming single multiple bonds)
Now let us classify according to the above formulas:
a. It has two hydrogen atoms less than the two times of carbon atoms hence, it's alkyne
b. It has two hydrogen atoms more than the two times of carbon atoms hence, it's alkane
c. It has two hydrogen atoms less than the two times of carbon atoms hence, it's alkyne
d. It has hydrogen atoms two times of carbon atoms hence, it's alkene
Answer:
The entropy change in the environment is 3.62x10²⁶.
Explanation:
The entropy change can be calculated using the following equation:

Where:
Q: is the energy transferred = 5.0 MJ
: is the Boltzmann constant = 1.38x10⁻²³ J/K
: is the initial temperature = 1000 K
: is the final temperature = 500 K
Hence, the entropy change is:
Therefore, the entropy change in the environment is 3.62x10²⁶.
I hope it helps you!
Answer: The molecule
is expected to have a dipole moment of zero.
Explanation:
The product of magnitude of the charge calculated in electrostatic units is called dipole moment.
Formula for dipole moment is as follows.
Dipole moment = Charge (in esu)
distance (in cm)
Non-polar molecules have zero dipole moment.
For example,
is a non-polar molecule so its dipole moment is zero.
is a polar molecule so it will have dipole moment.
is a polar molecule so it will have dipole moment.
has nitrogen atom as more electronegative than hydrogen atom. So, net dipole moment will be in the direction of nitrogen atom.
Thus, we can conclude that the molecule
is expected to have a dipole moment of zero.