Answer:
3.65 g / ml correct to 3 sig. fig.
Explanation:
The computation of the concentration required is shown below:
As we know that
[A] = mass of solute ÷ volume of solution
Before that first find the mass of solute
Given that
Initial weight = 5.55g
And,
Final weight = 92.7 g
So,
Mass of KCl is
= 92.7 - 5.55
= 87.15 g ~ 87.2 g
Now the KCi is fully dissolved, so the volume is 23.9 ml
So, concentration is
= 87.2 g ÷ 23.9 ml
= 3.65 g / ml correct to 3 sig. fig.
Answer:
Option (A)
Explanation:
Radioactivity is defined as a process in which an unstable atomic nucleus decays continuously and after a specific period of time changes into a much more stable element. During this time of decay, the nucleus emits charged particles (energy) which are known as the α, β and γ particles. These are often emitted in the form of electromagnetic energy and are very dangerous to health.
The radioactive elements decay at a certain rate which is commonly known as the half-life. Half-life is basically defined as the time required by a radioactive substance to decay half of its initial composition.
Thus, the correct answer is option (A).
Answer:
HBrO4 < HBrO3 < HBrO2 < HBrO