Julianne’s displacement from her origin is equal to 10.015 kilometers.
<u>Given the following data:</u>
- Distance B = 8.5 km, Northeast.
To calculate Julianne’s displacement from her origin:
<h3>How to calculate displacement.</h3>
We would denote the two (2) unit vectors along the East and Northeast directions by i and j respectively.
<u>Note:</u> Northeast is at angle of 45° with the East.
In terms of vectors, the distances becomes:
Distance A = 2i
![Distance\;B=8.5 [(cos 45i + sin 45j)]\\\\Distance\;B=(\frac{8.5}{\sqrt{2} } i \;+\;\frac{8.5}{\sqrt{2} } j)](https://tex.z-dn.net/?f=Distance%5C%3BB%3D8.5%20%5B%28cos%2045i%20%2B%20sin%2045j%29%5D%5C%5C%5C%5CDistance%5C%3BB%3D%28%5Cfrac%7B8.5%7D%7B%5Csqrt%7B2%7D%20%7D%20i%20%5C%3B%2B%5C%3B%5Cfrac%7B8.5%7D%7B%5Csqrt%7B2%7D%20%7D%20j%29)
<u>For the </u><u>resultant displacement</u><u>:</u>

D = 10.015 kilometers.
Read more on displacement here: brainly.com/question/13416288
Answer:
Explanation:
Using the atomic mass of pluonium atoms (244 g/mol), you can calculate the number of atoms in 47.0 g. Then, knowing that each plutonium atom has 96 protons, you calculate the number of protons in the 47.0 g sample. Finally, using the positive charge of one proton, you calculate the total positive charge in the 47.0 g of plutonium.
<u>1. Number of atoms of plutonium in 47.0 g</u>
- Number of moles = mass / atomic mass = 47.0 g / 244 = 0.1926 moles
- Number of atoms = number of moles × 6.022 × 10²³ atoms/mol
- Number of atoms = 0.1926 mol × 6.022 × 10²³ atoms/mol = 1.15998×10²³ atoms
<u>2. Number of protons</u>
- Number of protons = 1.15998×10²³ atoms × 96 protons/atom = 1.11385×10²⁵ protons
<u>3. Charge</u>
<u />
- Charge = charge of one proton × number of protons
- Charge = 1.602×10⁻¹⁹ C/proton × 1.11385×10²⁵ protons = 1.78×10⁶C
Answer:

Explanation:
Information we have:
velocities:
initial velocity:
(starts from rest)
final velocity: 
time:
Since we need the answer in
, we nees to convert the speed to meters per second:

We find the acceleration with the following formula:

substituting the known values:

the acceleration is 10.07
Answer:

The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.
Explanation:
In order to use the rule of thumb to find the speed of sound in meters per second, we need to use some conversion ratios. We know there is 1 mile per every 5 seconds after the lightning is seen. We also know that there are 5280ft in 1 mile and we also know that there are 0.3048m in 1ft. This is enough information to solve this problem. We set our conversion ratios like this:

notice how the ratios were written in such a way that the units got cancelled when calculating them. Notice that in one ratio the miles were on the numerator of the fraction while on the other they were on the denominator, which allows us to cancel them. The same happened with the feet.
The problem asks us to express the answer to one significant figure so the speed of sound rounds to 300m/s.
For the second part of the problem we need to use conversions again. This time we will write our ratios backwards and take into account that there are 1000m to 1 km, so we get:

This means that for every 3.11s there will be a distance of 1km from the place where the lightning stroke. Since this is a rule of thumb, we round to the nearest integer for the calculations to be made easily, so the rule goes like this:
The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.
<span>There is no special name for that. Physics is usually just concerned with "forces", and doesn't specify whether the force pushes or pulls. If you want to be more specific, you can just call it a "pulling force".
I hoped this was satisfying!:)</span>