Answer:1.123 x 10^-31cm
Explanation:
mass of humming bird= 11.0g
speed= 1.20x10^2mph
but I mile = 1.6m
1km=1000
I mile = 1.6x10^3m
1.20x10^2mph= 1.6x10^3m /1mile x at 1.20 x 10^2
=1.932 x10^5m
recall that
1 hr= 60 min
1 min=60 secs, 1hr=3600s
Speed = distance/ time
=1.932 x10^5 / 3600= 5.366 x 10 ^1 m/s
m= a 11.0g= 11.0 x 10^-3kg
h=6.626*10^-34 (kg*m^2)/s
Wavelength = h/mu
= 6.626*10^-34/(11 x 10^-3 x 5.366x 10^1)
6.63x10^-34/ 590.26x 10 ^-3= 1.123 x10^-33m
but 1m = 100cm
1.123 x 10 ^-33 x 100 = 1.123 x 10^-31cm
de broglie wavelength of humming bird = 1.123 x 10 ^-31cm
It take more energy to break the bonds of the reactants and less energy is given off when the product bonds are formed.
<h3>What is Energy?</h3>
Energy is defined as the ability to do work. Work is done in the breaking or formation of bonds.
The standard Enthalpy (ΔH) of water which was formed in the given reaction is negative.
ΔH= Δproduct - Δreactant
This means that the energy to break the bonds of the reactants is more.
Read more about Enthalpy here brainly.com/question/14291557
Answer:
pH = 1.32
Explanation:
H₂M + KOH ------------------------ HM⁻ + H₂O + K⁺
This problem involves a weak diprotic acid which we can solve by realizing they amount to buffer solutions. In the first deprotonation if all the acid is not consumed we will have an equilibrium of a wak acid and its weak conjugate base. Lets see:
So first calculate the moles reacted and produced:
n H₂M = 0.864 g/mol x 1 mol/ 116.072 g = 0.074 mol H₂M
54 mL x 1L / 1000 mL x 0. 0.276 moles/L = 0.015 mol KOH
it is clear that the maleic acid will not be completely consumed, hence treat it as an equilibrium problem of a buffer solution.
moles H₂M left = 0.074 - 0.015 = 0.059
moles HM⁻ produced = 0.015
Using the Henderson - Hasselbach equation to solve for pH:
ph = pKₐ + log ( HM⁻/ HA) = 1.92 + log ( 0.015 / 0.059) = 1.325
Notes: In the HH equation we used the moles of the species since the volume is the same and they will cancel out in the quotient.
For polyprotic acids the second or third deprotonation contribution to the pH when there is still unreacted acid ( Maleic in this case) unreacted.