Answer:
V= 12mL
Explanation:
you had the right idea with your Significant figures however, when we divide we see that it requires 2 significant figures as our least amount. this is because when looking at our division, 62 has 2 sig. fig. while 5.35 has a total 3. when looking at your answer we see that you had a total of 3 sig. figures. so in actuakity you had to round up to 12 and not to the tenths because the decimal makes .6 count as your third sig fig.
<u>Answer:</u> The number of moles of weak acid is
moles.
<u>Explanation:</u>
To calculate the moles of KOH, we use the equation:

We are given:
Volume of solution = 43.81 mL = 0.04381 L (Conversion factor: 1L = 1000 mL)
Molarity of the solution = 0.0969 moles/ L
Putting values in above equation, we get:

The chemical reaction of weak monoprotic acid and KOH follows the equation:

By Stoichiometry of the reaction:
1 mole of KOH reacts with 1 mole of weak monoprotic acid.
So,
of KOH will react with =
of weak monoprotic acid.
Hence, the number of moles of weak acid is
moles.
Group 2 elements are the alkaline earth metals
Answer:
Mass = 65.8 g
Explanation:
Given data:
Mass of sodium chloride = ?
Volume of solution = 1.5 L
Molarity of solution = 0.75 M
Solution:
Number of moles of sodium chloride:
Molarity = number of moles / volume in L
By putting values,
0.75 M = number of moles = 1.5 L
Number of moles = 0.75 M × 1.5 L
Number of moles = 1.125 mol
Mass of sodium chloride:
Mass = number of moles × molar mass
Mass = 1.125 mol × 58.5 g/mol
Mass = 65.8 g