The units of G must be C. m³ / ( kg s² )
<h3>Further explanation</h3>
Newton's gravitational law states that the force of attraction between two objects can be formulated as follows:

<em>F = Gravitational Force ( Newton )</em>
<em>G = Gravitational Constant ( 6.67 × 10⁻¹¹ Nm² / kg² )</em>
<em>m = Object's Mass ( kg )</em>
<em>R = Distance Between Objects ( m )</em>
Let us now tackle the problem !
To find unit of Gravitational Constant can be carried out in the following way:

![{[N]}= G\frac{{[kg]}{[kg]}}{{[m^2]}}](https://tex.z-dn.net/?f=%7B%5BN%5D%7D%3D%20G%5Cfrac%7B%7B%5Bkg%5D%7D%7B%5Bkg%5D%7D%7D%7B%7B%5Bm%5E2%5D%7D%7D)
![{[kg ~ m / s^2]}= G \frac{{[kg^2]}}{{[m^2]}}](https://tex.z-dn.net/?f=%7B%5Bkg%20~%20m%20%2F%20s%5E2%5D%7D%3D%20G%20%5Cfrac%7B%7B%5Bkg%5E2%5D%7D%7D%7B%7B%5Bm%5E2%5D%7D%7D)
![G = \frac{{[kg ~ m / s^2]}{[m^2]}} {{[kg^2]} }](https://tex.z-dn.net/?f=G%20%3D%20%5Cfrac%7B%7B%5Bkg%20~%20m%20%2F%20s%5E2%5D%7D%7B%5Bm%5E2%5D%7D%7D%20%7B%7B%5Bkg%5E2%5D%7D%20%7D)
![G = \frac{{[kg ~ m^3 / s^2]}} {{[kg^2]} }](https://tex.z-dn.net/?f=G%20%3D%20%5Cfrac%7B%7B%5Bkg%20~%20m%5E3%20%2F%20s%5E2%5D%7D%7D%20%7B%7B%5Bkg%5E2%5D%7D%20%7D)
![G = \frac{{[m^3 / s^2]}} {{[kg]} }](https://tex.z-dn.net/?f=G%20%3D%20%5Cfrac%7B%7B%5Bm%5E3%20%2F%20s%5E2%5D%7D%7D%20%7B%7B%5Bkg%5D%7D%20%7D)
![\boxed {G = \frac{{[m^3]}} {{[kg ~ s^2]} }}](https://tex.z-dn.net/?f=%5Cboxed%20%7BG%20%3D%20%5Cfrac%7B%7B%5Bm%5E3%5D%7D%7D%20%7B%7B%5Bkg%20~%20s%5E2%5D%7D%20%7D%7D)
The unit of G must be 
<h3>Learn more</h3>
<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Gravitational Fields
Keywords: Gravity , Unit , Magnitude , Attraction , Distance , Mass , Newton , Law , Gravitational , Constant
The density of the nickel was greater than that of the quarter and penny, thus, the results supports the hypothesis.
<h3>What is density of substance?</h3>
The density of a substance is a measure of how tightly-packed the particles of the substance are.
Density is calculated as the ratio of the mass of the substance and the volume of the substance.
The hypothesis of the lab to compare the densities of a penny, a nickel, and a quarter is:
- If the nickel has a greater density than the quarter and penny, then it will have a greater mass to volume ratio. If the nickel has a lower density than the quarter and penny, then it will have a lower mass-to-volume ratio.
The average mass and the average volume of a penny, a nickel, and a quarter are then used to determine the density of each coin.
Based on obtained results, it would be found that the density of the nickel was greater than that of the quarter and penny. Therefore, the results supports the hypothesis.
In conclusion, the density of a substance depends on the mass and the volume.
Learn more about density at: brainly.com/question/1354972
#SPJ1
There are two atoms of potassium bonded to one atom of sulfur.
During cytokinesis, the cytoplasm of the cell is divided in half, and the cell membrane grows to enclose each cell, forming two separate cells as a result. The end result of mitosis and cytokinesis is two genetically identical cells where only one cell existed before.
120/6=20 ohms :) would be the ans