The frictional force while the mass is sliding will be 46.2 N.
<h3>What is friction force?</h3>
Opposition forces on the surface cause heat loss during the motion of an object known as the friction force.
Given data:
m(mass)= 10.0-kg
Θ (Inclination angle)=25.0o
Coefficient of sliding friction,
=0.520
Coefficient of static friction,
The friction force, F=?
Resolve the force in the inclined plane;

Hence, the frictional force while the mass is sliding will be 46.2 N.
To know more about friction force refer to the link;
brainly.com/question/1714663
#SPJ1
Answer:
a) their potential energy increases.
Explanation:
Ohm's Law is
R= V/I
Where R= Resistance
V= potential difference or potential energy
I= current or conduction electron flow rate
Clearly R and V are directly proportional i-e Potential energy increases with resistance.
Answer:
The internet is most useful to them because they use it to communicate.
Explanation:
If I were to send a message to my brother in Florida, through the internet, while I'm in Pennsylvania he would get it in minutes. On the other hand if I were going to meet him and then explain what I wanted to tell him in person it would take a much longer time.
I think you're saying that once you start pushing on the cars, you want to be able to stop each one in the same time.
This is sneaky. At first, I thought it must be both 'c' and 'd'. But it's not
kinetic energy, for reasons I'm not ambitious enough to go into.
(And besides, there's no great honor awarded around here for explaining
why any given choice is NOT the answer.)
The answer is momentum.
Momentum is (mass x speed). Change in momentum is (force x time).
No matter the weight (mass) or speed of the car, the one with the greater
momentum is always the one that will require the greater (force x time)
to stop it. If the time is the same for any car, then more momentum
will always require more force.
Answer:
hey...................................