Answer:
165 mm
Explanation:
The mass on the piston will apply a pressure on the oil. This is:
p = f / A
The force is the weight of the mass
f = m * a
Where a in the acceleration of gravity
A is the area of the piston
A = π/4 * D1^2
Then:
p = m * a / (π/4 * D1^2)
The height the oil will raise is the heignt of a colum that would create that same pressure at its base:
p = f / A
The weight of the column is:
f = m * a
The mass of the column is its volume multiplied by its specific gravity
m = V * S
The volume is the base are by the height
V = A * h
Then:
p = A * h * S * a / A
We cancel the areas:
p = h * S * a
Now we equate the pressures form the piston and the pil column:
m * a / (π/4 * D1^2) = h * S * a
We simplify the acceleration of gravity
m / (π/4 * D1^2) = h * S
Rearranging:
h = m / (π/4 * D1^2 * S)
Now, h is the heigth above the interface between the piston and the oil, this is at h1 = 42 mm. The total height is
h2 = h + h1
h2 = h1 + m / (π/4 * D1^2 * S)
h2 = 0.042 + 10 / (π/4 * 0.14^2 * 0.8) = 0.165 m = 165 mm
The train is traveling 26 meters A second .
umm , is it okay if we do this on microsoft word , cuz i cant send pics of answers here...
Answer:
Realigning the mirror
Explanation:
mirrors should be aligned to minimize blind spots, not look at the tires.
Answer:
Multiplying impulse response by t ( option D )
Explanation:
We can obtain The impulse response of strength 1 considering a unit step response by Multiplying impulse response by t .
When we consider the Laplace Domain, and the relationship between unit step and impulse, we can deduce that the Impulse response will take the inverse Laplace transform of the function ( transfer ) . Hence Multiplying impulse response by t will be used .