Answer:
Longitudinal waves
Explanation:
With sound waves, the energy travels along in the same direction as the particles vibrate. This type of wave is known as a longitudinal wave , so named because the energy travels along the direction of vibration of the particles.
We have to convert Gm/s to m/s.
As 
Therefore the speed of light in vacuum,

Thus, the speed of light in m/s is 
Answer:
To increase the conductivity of the material.
Explanation:
Generally , the group 4 elements are non conductor but in certain conditions, such as doping or the increase in temperature, they becomes conductor.
The doping is the process of mixing of pentavalent or the trivalent material into tetra valent material in the very small amount, so that the material becomes conductor.
In making a diode we need two types of the materials, n type semiconductor and p type semi conductor.
When the trivalent impurity is added in the tetra valent element, the semiconductor becomes n type because an electron is left for the conduction.
When the pentavalent impurity is added in the tetra valent element, the semiconductor becomes p type because a hole is left for the conduction.
Answer:
The thrust of the jet engine is 4188.81 N.
Explanation:
Given that,
Speed = 260 m/s
Rate in air= 53.3 kg/s
Rate of fuel = 3.63 kg/s
Relative speed = 317 m/s
We need to calculate the rate of mass change in the rocket
Using formula of rate of mass

Put the value into the formula


We need to calculate the thrust of the jet engine
Using formula of thrust

Put the value into the formula


Hence, The thrust of the jet engine is 4188.81 N.
Answer:
the magnitude of the work done by the two blocks is the same.
Explanation:
The work done by block a on block b is given by:

where Fa is the force exerted by block a on block b, and d is the distance they cover.
The work done by block b on block a is given by:

where Fb is the force exerted by block b on block a, and d is still the distance they cover.
For Newton's third law, the force exerted by block a on block b is equal to the force exerted by block b on block a, therefore

and so
