Potential and kinetic energy are at play when we talk about Newton's second law of motion through the various positions in relation to the bodies involved.
<h3>What is Newton's second law of motion?</h3>
This law states that force is equal to the rate of change of momentum and is denoted as F = mv where m is mass and v is velocity.
Potential energy is the energy is possessed by a body by virtue of its position while kinetic energy is possessed by a body by virtue of its motion. Both forms of energy are influenced by forces and are equal to the total momentum.
Read more about Newton's second law of motion here brainly.com/question/2009830
#SPJ1
Answer:0.669
Explanation:
Given
mass of clock 93 kg
Initial force required to move it 610 N
After clock sets in motion it requires a force of 514 N to keep moving it with a constant velocity
Initially static friction is acting which is more than kinetic friction
thus 613 force is required to overcome static friction


The volume of the balloon will halve
Explanation:
Boyle's law states that for an ideal gas kept at constant temperature, the pressure of the gas is proportional to its volume. Mathematically,

where
p is the gas pressure
V is the volume
The equation can also be rewritten as

And if we apply it to the gas inside the balloon in this problem (assuming its temperature is constant), we have:
is the initial pressure at sea level (the atmospheric pressure)
is the initial volume
is the final pressure
is the final volume
Substituting into the equation, we find:

Which means that the volume of the balloon will halve.
Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
There must be movement in the same direction as the force put on the object. Hope this helps!
Answer:
Probs paper cuz the rest are metals