The power required is 30 Watt.
Let us recall that power is defined as the rate of doing work. Hence, we can write as follows;
Power = Work done/ time taken
Now;
work done = Force × distance
Force = 30.0 N
Distance = 10.0 m
work done = 30.0 N × 10.0 m = 300 J
The power expended = 300 J/10.00 s = 30 Watt
Learn more: brainly.com/question/64224
I believe this would be an example of positive acceleration as the initial velocity of the rocket is less than the final velocity, indicating that the rocket is accelerating and thus is positive.
Answer:
a) F = 1.26 10⁵ N, b) F = 2.44 10³ N, c) F_net = 1.82 10³ N directed vertically upwards
Explanation:
For this exercise we must use the relationship between momentum and momentum
I = Δp
F t = p_f -p₀
a) It asks to find the force
as the man stops the final velocity is zero
F = 0 - p₀ / t
the speed is directed downwards which is why it is negative, therefore the result is positive
F = m v₀ / t
F = 63.5 7.89 / 3.99 10⁻³
F = 1.26 10⁵ N
b) in this case flex the knees giving a time of t = 0.205 s
F = 63.5 7.89 / 0.205
F = 2.44 10³ N
c) The net force is
F_net = Sum F
F_net = F - W
F_net = F - mg
let's calculate
F_net = 2.44 10³ - 63.5 9.8
F_net = 1.82 10³ N
since it is positive it is directed vertically upwards
Answer:
write something like after the spacecraft launched all of the potential energy transformed into kinetic energy causing the spacecraft to go at an abnormal spped.
Explanation: