The equilibrant force of the two given forces is 14.14 N.
<h3 /><h3 /><h3>What is equilibrant force?</h3>
- This is a single force that balances other given forces.
The given parameters:
- First force, F₁ = 10 N
- Second force, F₂ = 10 N
- Angle between the forces, θ = 90⁰
The equilibrant force of the two given forces is calculated as follows;

Thus, the equilibrant force of the two given forces is 14.14 N.
Learn more about equilibrant force here: brainly.com/question/8045102
Answer:
Plants slow down water as it flows over the land and this allows much of the rain to soak into the ground. Plant roots hold the soil in position and prevent it from being blown or washed away. Plants break the impact of a raindrop before it hits the soil, reducing the soil's ability to erode.
Explanation:
Answer:
a) D_ total = 18.54 m, b) v = 6.55 m / s
Explanation:
In this exercise we must find the displacement of the player.
a) Let's start with the initial displacement, d = 8 m at a 45º angle, use trigonometry to find the components
sin 45 = y₁ / d
cos 45 = x₁ / d
y₁ = d sin 45
x₁ = d sin 45
y₁ = 8 sin 45 = 5,657 m
x₁ = 8 cos 45 = 5,657 m
The second offset is d₂ = 12m at 90 of the 50 yard
y₂ = 12 m
x₂ = 0
total displacement
y_total = y₁ + y₂
y_total = 5,657 + 12
y_total = 17,657 m
x_total = x₁ + x₂
x_total = 5,657 + 0
x_total = 5,657 m
D_total = 17.657 i^+ 5.657 j^ m
D_total = Ra (17.657 2 + 5.657 2)
D_ total = 18.54 m
b) the average speed is requested, which is the offset carried out in the time used
v = Δx /Δt
the distance traveled using the pythagorean theorem is
r = √ (d1² + d2²)
r = √ (8² + 12²)
r = 14.42 m
The time used for this shredding is
t = t1 + t2
t = 1 + 1.2
t = 2.2 s
let's calculate the average speed
v = 14.42 / 2.2
v = 6.55 m / s
Answer: b) pointed toward and parallel to the member.
Explanation:
It is shown in the picture attached
Answer:
a)

b) 
Explanation:
The net force on the car must produce the centripetal acceleration necessary to make this circle, which is
. At the top of the circle, the normal force and the weight point downwards (like the centripetal force should), while at the bottom the normal force points upwards (like the centripetal force should) and the weight downwards, so we have (taking the upwards direction as positive):

Which means:

The limit for falling off would be
, so the minimum speed would be:
