Newton’s Third Law of Motion states that for every action there is an equal and opposite reaction. So look for a scenario in which something had force applied upon it and the reaction is a force in the opposite direction of the same size.
Continental Tropical Air Mass. Your welcome matey
Answer:
F = 274.68[N]
Explanation:
The gravitational force is equal to the weight of a body, or this case that of a person. Weight can be calculated by means of the product of mass by gravitational acceleration. In this way we have the following equation:

where:
F = force or weight [N]
m = mass = 28 [kg]
g = gravity acceleration = 9.81 [m/s²]
Now replacing:
![F=28*9.81\\F=274.68[N]](https://tex.z-dn.net/?f=F%3D28%2A9.81%5C%5CF%3D274.68%5BN%5D)
A direct current
this is a current that only flows in one direction
Answer:
h' = 603.08 m
Explanation:
First, we will calculate the initial velocity of the pellet on the surface of Earth by using third equation of motion:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity on the surface of earth = - 9.8 m/s² (negative sign due to upward motion)
h = height of pellet = 100 m
Vf = final velocity of pellet = 0 m/s (since, pellet will momentarily stop at highest point)
Vi = Initial Velocity of Pellet = ?
Therefore,
(2)(-9.8 m/s²)(100 m) = (0 m/s)² - Vi²
Vi = √(1960 m²/s²)
Vi = 44.27 m/s
Now, we use this equation at the surface of moon with same initial velocity:
2g'h' = Vf² - Vi²
where,
g' = acceleration due to gravity on the surface of moon = 1.625 m/s²
h' = maximum height gained by pellet on moon = ?
Therefore,
2(1.625 m/s²)h' = (44.27 m/s)² - (0 m/s)²
h' = (1960 m²/s²)/(3.25 m/s²)
<u>h' = 603.08 m</u>