Answer:
CB = 4.45 x 10⁻⁹ F = 4.45 nF
Explanation:
The capacitance of a parallel plate capacitor is given by the following formula:
C = ε₀A/d
where,
C = Capacitance
ε₀ = Permeability of free space
A = Area of plates
d = Distance between plates
FOR CAPACITOR A:
C = CA = 17.8 nF = 17.8 x 10⁻⁹ F
A = A₁
d = d₁
Therefore,
CA = ε₀A₁/d₁ = 17.8 x 10⁻⁹ F ----------------- equation 1
FOR CAPACITOR B:
C = CB = ?
A = A₁/2
d = 2 d₁
Therefore,
CB = ε₀(A₁/2)/2d₁
CB = (1/4)(ε₀A₁/d₁)
using equation 1:
CB = (1/4)(17.8 X 10⁻⁹ F)
<u>CB = 4.45 x 10⁻⁹ F = 4.45 nF</u>
Acceleration = vf-vi /t
10-22/3=2.6m/s^2
A = delta v over delta t delta v is calculated with final velocity less initial velocity then delta v is equals to 20 - 0 that is 20m/s and to calculate delta t is like delta v is final time less initial time as initial time always is 0 the delta t is equals to 10s then a = 20/10 then acceleration is 10m/s^2 (remember that is squared)
Answer: 10Nm or 10J
Explanation:
Given the following :
Force (f) = 5
Distance (d) = 2m
Calculate the kinetic energy assuming no friction
Work done = force × distance
Work done = 5N × 2m = 10Nm
Recall :
Work done = ΔK.E ( change in kinetic energy)
Therefore, kinetic energy of the book after sliding = ΔK. E, which is equal to work done.
Hence, K. E of book after sliding is 10Nm