1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valentinak56 [21]
2 years ago
5

Which packet-forwarding method does a router use to make switching decisions when it is using a forwarding information base and

an adjacency table?.
Engineering
1 answer:
kolezko [41]2 years ago
7 0
Which packet-forwarding method does a router use to make switching decisions when it is using a forwarding information base and an adjacency table? Explanation: Cisco Express Forwarding (CEF) is the fastest and preferred switching method. It uses a FIB and an adjacency table to perform the task of packet switching
You might be interested in
12. What procedure should you follow when taking measurements?
OlgaM077 [116]
I think the answer is b
8 0
2 years ago
The solid cylinders AB and BC are bonded together at B and are attached to fixed supports at A and C. The modulus of rigidity is
romanna [79]

Answer:

a) 0.697*10³ lb.in

b) 6.352 ksi

Explanation:

a)

For cylinder AB:

Let Length of AB = 12 in

c=\frac{1}{2}d=\frac{1}{2} *1.1=0.55in\\ J=\frac{\pi c^4}{2}=\frac{\pi}{2}0.55^4=0.1437\ in^4\\

\phi_B=\frac{T_{AB}L}{GJ}=\frac{T_{AB}*12}{3.3*10^6*0.1437}  =2.53*10^{-5}T_{AB}

For cylinder BC:

Let Length of BC = 18 in

c=\frac{1}{2}d=\frac{1}{2} *2.2=1.1in\\ J=\frac{\pi c^4}{2}=\frac{\pi}{2}1.1^4=2.2998\ in^4\\

\phi_B=\frac{T_{BC}L}{GJ}=\frac{T_{BC}*18}{5.9*10^6*2.2998}  =1.3266*10^{-6}T_{BC}

2.53*10^{-5}T_{AB}=1.3266*10^{-6}T_{BC}\\T_{BC}=19.0717T_{AB}

T_{AB}+T_{BC}-T=0\\T_{AB}+T_{BC}=T\\T_{AB}+T_{BC}=14*10^3\ lb.in\\but\ T_{BC}=19.0717T_{AB}\\T_{AB}+19.0717T_{AB}=14*10^3\\20.0717T_{AB}=14*10^3\\T_{AB}=0.697*10^3\ lb.in\\T_{BC}=13.302*10^3\ lb.in

b) Maximum shear stress in BC

\tau_{BC}=\frac{T_{BC}}{J}c=13.302*10^3*1.1/2.2998=6.352\ ksi

Maximum shear stress in AB

\tau_{AB}=\frac{T_{AB}}{J}c=0.697*10^3*0.55/0.1437=2.667\ ksi

8 0
3 years ago
(35-39) A student travels on a school bus in the middle of winter from home to school. The school bus temperature is 68.0° F. Th
arlik [135]

Answer:

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

Explanation:

From Heat Transfer we determine that heat transfer rate due to electromagnetic radiation (\dot Q), measured in BTU per hour, is represented by this formula:

\dot Q = \epsilon\cdot A\cdot \sigma \cdot (T_{s}^{4}-T_{b}^{4}) (1)

Where:

\epsilon - Emissivity, dimensionless.

A - Surface area of the student, measured in square feet.

\sigma - Stefan-Boltzmann constant, measured in BTU per hour-square feet-quartic Rankine.

T_{s} - Temperature of the student, measured in Rankine.

T_{b} - Temperature of the bus, measured in Rankine.

If we know that \epsilon = 0.90, A = 16.188\,ft^{2}, \sigma = 1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}}, T_{s} = 554.07\,R and T_{b} = 527.67\,R, then the heat transfer rate due to electromagnetic radiation is:

\dot Q = (0.90)\cdot (16.188\,ft^{2})\cdot \left(1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}} \right)\cdot [(554.07\,R)^{4}-(527.67\,R)^{4}]

\dot Q = 417.492\,\frac{BTU}{h}

Under the consideration of steady heat transfer we find that the net energy transfer from the student's body during the 20 min-ride to school is:

Q = \dot Q \cdot \Delta t (2)

Where \Delta t is the heat transfer time, measured in hours.

If we know that \dot Q = 417.492\,\frac{BTU}{h} and \Delta t = \frac{1}{3}\,h, then the net energy transfer is:

Q = \left(417.492\,\frac{BTU}{h} \right)\cdot \left(\frac{1}{3}\,h \right)

Q = 139.164\,BTU

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

7 0
2 years ago
N DevOps, high levels of automation are expected, which increases productivity. Which fact illustrates this productivity increas
Bess [88]

Answer:

Less intervention of humans.

Explanation:

This fact illustrate that less intervention of human in the production is the main cause for increase in productivity because use of machinery completed the work in less time as compared to the use of human labour. In many industries, machines takes the place of humans which increases the production of products but at the same time, increase the unemployment rate in the society. Making the whole industry on automation can increase the productivity of products in less time.

3 0
3 years ago
What causes the moon to be illuminated? PLEASE HELP MEH ILL GIVE YOU BRAINLEIST!!
Likurg_2 [28]

Answer:

D Reflection

Explanation:

It reflects the light from the sun. Then when the earth gets in the way, it casts a shadow causing crescent moons.

7 0
2 years ago
Other questions:
  • According to information found in an old hydraulies book, the energy loss per unit weight of fluid flowing through a nozzle conn
    6·1 answer
  • How does the map scale help to interpret the map?
    14·2 answers
  • To reduce the drag coefficient and thus improve the fuel efficiency of cars,the design of side rearview mirrors has changed dram
    11·1 answer
  • Light energy produces the only voltage in a solar cell. (a)-True(T) (b)- false(F)
    9·1 answer
  • Air (ideal gas) is contained in a cylinder/piston assembly at a pressure of 150 kPa and a temperature of 127°C. Assume that the
    12·1 answer
  • Which type of finish is absorbed into the wood?
    7·1 answer
  • which one of the following appliance parts gets the hardest services? A. Heating elementwhich one of the following appliance par
    10·2 answers
  • How much memory can a 32 -bit processor support ?
    13·1 answer
  • *100 POINTS
    6·2 answers
  • Estimate the maximum expected thermal conductivity for a Cermet that contains 58 vol% titanium carbide (TiC) particles in a coba
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!