White case with a brown band and black markings
Answer:
A or B depending on your precision
Explanation:
In real life, applying to solid will shrink it depending on the amount of pressure applied, but due to the strength of solid bonds, the volume change is often negligible in practical situation and would only be accounted under astronomically high pressure phenomena (eg. at Jupiter's core or near black hole).
In high school level, and for many applications, it is entirely viable to completely neglect the change in solid volume under pressure. Thus, A is a legitimate answer. However, bear in mind that <em>in theory</em> the volume still decreases by a very slight amount. So B is correct as well, theoretically. The most correct option depends on the precision you needed.
Escape velocity is the velocity an object needs to escape the gravitational influence of a body if it is in free fall, i.e. no force other than gravity acts on it. Your rocket is not in free fall since it is using its thruster to maintain a constant velocity so the notion of "escape velocity" does not apply to it.
I believe the answer would be B.
I believe this would be frequency, as wavelength measures the waves themselves, and a period is a section of time. Wave speed is the speed of their movement.