Answer:

Explanation:
Given data
Length of tube L=0.632 m
Speed of sound v=344 m/s
To find
Fundamental frequency f
Solution
The fundamental frequency of the tube can be given as:

Answer:
So lift will be 30.19632 N
Explanation:
We have given area of the wing 
We know that density of air 
Speed at top surface
and speed at bottom surface 
According to Bernoulli's principle force is given by
Answer:
k = 9.6 x 10^5 N/m or 9.6 kN/m
Explanation:
First, we need to use the expression to calculate the spring constant which is:
w² = k/m
Solving for k:
k = w²*m
To get the angular velocity:
w = 2πf
The problem is giving the linear velocity of the car which is 5.7 m/s. With this we can calculate the frequency of the car:
f = V/x
f = 5.7 / 4.9 = 1.16 Hz
Now the angular velocity:
w = 2π*1.16
w = 7.29 rad/s
Finally, solving for k:
k = (7.29)² * 1800
k = 95,659.38 N/m
In two significant figures it'll ve 9.6 kN/m
From our perspective on Earth, two types of eclipses <span>occur: </span>lunar<span>, the blocking of the </span>Moon<span> by Earth's shadow, and </span>solar, the obstruction of the Sun by the Moon<span>. ... When Earth passes directly </span>between<span> Sun and </span>Moon<span>, its shadow creates a </span>lunar eclipse<span>.</span>