Answer:
Yes. Towards the center. 8210 N.
Explanation:
Let's first investigate the free-body diagram of the car. The weight of the car has two components: x-direction: towards the center of the curve and y-direction: towards the ground. Note that the ground is not perpendicular to the surface of the Earth is inclined 16 degrees.
In order to find whether the car slides off the road, we should use Newton's Second Law in the direction of x: F = ma.
The net force is equal to 
Note that 95 km/h is equal to 26.3 m/s.
This is the centripetal force and equal to the x-component of the applied force.

As can be seen from above, the two forces are not equal to each other. This means that a friction force is needed towards the center of the curve.
The amount of the friction force should be 
Qualitatively, on a banked curve, a car is thrown off the road if it is moving fast. However, if the road has enough friction, then the car stays on the road and move safely. Since the car intends to slide off the road, then the static friction between the tires and the road must be towards the center in order to keep the car in the road.
We have to convert Gm/s to m/s.
As 
Therefore the speed of light in vacuum,

Thus, the speed of light in m/s is 
Faraday discovered that a current could be induced in a solenoid (a coil of wire) when "<span>a magnetized rod is being moved through the coil"
Hope this helps!</span>
Answer:
None, both objects will hit ground at the same time.
Explanation:
- Assuming no air resistance present, and that both objects start from rest, we can apply the following kinematic equation for the vertical displacement:

- As the left side in (1) is the same for both objects, the right side will be the same also.
- Since g is constant close to the surface of the Earth, it's also the same for both objects.
- So, the time t must be the same for both objects also.
The best and most correct answers among the choices provided by your question are he second and third choices.
<span>The velocity at any instant the average velocity during some time interval cannot be obtained from the graph alone.</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!