1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex Ar [27]
2 years ago
10

Q1. (20 marks) Entropy Analysis of the heat engine: consider a 35% efficient heat engine operating between a large, high- temper

ature reservoir at 1000 K (727 °C) and a large, cold reservoir at 308 K (35°C). If it withdraws 1.2 MJ/s from the high-temperature reservoir, what would be the rate of loss of entropy from that reservoir and what would be the rate of gain by the low-temperature reservoir? (4 marks) b. Express the work done by the engine in watts. (3 marks) What would be the total entropy gain of the system? d. Determine Carnot efficiency and recalculate the a, b, and c, accordingly. ​
Engineering
1 answer:
Anvisha [2.4K]2 years ago
6 0

The rate of gain for the high reservoir would be 780 kj/s.

A. η = 35%

\frac{w}{Q1} = \frac{35}{100}

W = 1.2*\frac{35}{100}*1000kj/s

W = 420 kj/s

Q2 = Q1-W

= 1200-420

= 780 kJ/S

<h3>What is the workdone by this engine?</h3>

B. W = 420 kj/s

= 420x1000 w

= 4.2x10⁵W

The work done is 4.2x10⁵W

c. 780/308 - 1200/1000

= 2.532 - 1.2

= 1.332kj

The total enthropy gain is 1.332kj

D. Q1 = 1200

T1 = 1000

\frac{1200}{1000} =\frac{Q2}{308} \\\\Q2 = 369.6 KJ

<h3>Cournot efficiency = W/Q1</h3>

= 1200 - 369.6/1200

= 69.2 percent

change in s is zero for the reversible heat engine.

Read more on enthropy here: brainly.com/question/6364271

You might be interested in
Need help please????????!!!!!!
Alekssandra [29.7K]

Answer A the more traing the more you will know

Explanation:

4 0
3 years ago
The electrical panel schedules are located on EWR Plan number ___.
Stells [14]
A8 is the answer because yea and because I am a teacher
5 0
3 years ago
When you see a street with white markings only, what kind of street is it?
Georgia [21]

Answer:

it's a one way street

3 0
3 years ago
A cooling system load is 96,000 BTUh sensible. How much chilled air is required to satisfy the load if the system is designed fo
Natalija [7]

Answer:

For 20^{\circ} - 5.556 lb/s

For 15^{\circ} - 7.4047 lb/s

Solution:

As per the question:

System Load = 96000 Btuh

Temperature, T = 20^{\circ}

Temperature rise, T' = 15^{\circ}

Now,

The system load is taken to be at constant pressure, then:

Specific heat of air, C_{p} = 0.24 btu/lb ^{\circ}F

Now, for a rise of 20^{\circ} in temeprature:

\dot{m}C_{p}\Delta T = 96000

\dot{m} = \frac{96000}{C_{p}\Delta T} = \frac{96000}{0.24\times 20} = 20000 lb/h = \frac{20000}{3600} = 5.556 lb/s

Now, for 15^{\circ}:

\dot{m}C_{p}\Delta T = 96000

\dot{m} = \frac{96000}{C_{p}\Delta T} = \frac{96000}{0.24\times 15} = 26666.667 lb/h = \frac{26666.667}{3600} = 7.4074 lb/s

4 0
3 years ago
What type of engineer works to create a practical and safe energy source?
Fittoniya [83]
Why did you put this on here when you know the answer lol
4 0
3 years ago
Other questions:
  • Suppose an underground storage tank has been leaking for many years, contaminating a groundwater and causing a contaminant conce
    8·1 answer
  • Are you able to text without looking at your phone?
    10·1 answer
  • What is the angle of the input
    12·1 answer
  • How do the remains of plants and animals become fossil fuels. Why are they considered nonrenewable resources?
    13·1 answer
  • 1. Using the formula above, complete this task.
    9·1 answer
  • What is a transition? A. An animation that happens on a single slide B. An outline format that uses roman numerals C. An image f
    10·1 answer
  • Need help, I will give cake :))<br><br> + branliest
    14·2 answers
  • Documentation of a flow chart?
    7·1 answer
  • 19. A circuit contains four 100 S2 resistors connected in series. If you test the circuit with a digital VOM,
    9·1 answer
  • s) Use Cramer’s rule to solve the system below, and state the condition at which solution exists. ax+by = 1 cx+dy =−1
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!