Answer:
Absolute pressure=70.72 KPa
Explanation:
Given that Vacuum gauge pressure= 30 KPa
Barometer reading =755 mm Hg
We know that barometer always reads atmospheric pressure at given situation.So atmospheric pressure is equal to 755 mm Hg.
We know that P= ρ g h
Density of
So P=13600 x 9.81 x 0.755
P=100.72 KPa
We know that
Absolute pressure=atmospheric pressure + gauge pressure
But here given that 30 KPa is a Vacuum pressure ,so we will take it as negative.
Absolute pressure=atmospheric pressure + gauge pressure
Absolute pressure=100.72 - 30 KPa
So
Absolute pressure=70.72 KPa
Answer:
a)
b) attached below
c) type zero system
d) k >
e) The gain K increases above % error as the steady state speed increases
Explanation:
Given data:
Motor voltage = 12 v
steady state speed = 200 rad/s
time taken to reach 63.2% = 1.2 seconds
<u>a) The transfer function of the motor from voltage to speed</u>
let ; be the transfer function of a motor
when i/p = 12v then steady state speed ( k1 ) = 200 rad/s , St ( time constant ) = 1.2 sec
hence the transfer function of the motor from voltage to speed
=
<u>b) draw the block diagram of the system with plant controller and the feedback path </u>
attached below is the remaining part of the detailed solution
c) The system is a type-zero system because the pole at the origin is zero
d) ) k >
Answer:
Circuit attached with explanation
Explanation:
Hi Dear,
A circuit is attached for your reference.
When you press "start" PB, the supply reaches the motor starter relay coil "M" that is also in parallel with the "start" PB which allows the motor to remain ON even when you release "start" PB as supply to relay coil is directly from supply "L" through "M".
To stop motor just press "stop" PB and the circuit breaks which de-energize the relay coil and the motor stops.
Hope this finds easy to you.
Answer:
Explanation:
From the information given:
Life requirement = 40 kh = 40
Speed (N) = 520 rev/min
Reliability goal = 0.9
Radial load = 2600 lbf
To find C10 value by using the formula:
where;
The Weibull parameters include:
∴
Using the above formula:
Recall that:
1 kN = 225 lbf
∴
Answer:
the pressure at a closed valve attached to the tank 10 ft above its bottom is 37.88 psi
Explanation:
Given that;
depth 1 = 71 ft
depth 2 = 10 ft
pressure p = 17 psi = 2448 lb/ft²
depth h = 71 ft - 10 ft = 61 ft
we know that;
p = P_air + yh
where y is the specific weight of ethyl alcohol ( 49.3 lb/ft³ )
so we substitute;
p = 2448 + ( 49.3 × 61 )
= 2448 + 3007.3
= 5455.3 lb/ft³
= 37.88 psi
Therefore, the pressure at a closed valve attached to the tank 10 ft above its bottom is 37.88 psi