Answer:
The pH of the solution is 1.38.
Explanation:
Mass of HCl = 614 mg = 0.614 g
Moles of HCl = 
Concentration of HCl :

On adding 0.01682 moles to 400 mL of water that 0.4 L of water.
![[HCl]=\frac{0.01682 mol}{0.4 L}=0.04205 M](https://tex.z-dn.net/?f=%5BHCl%5D%3D%5Cfrac%7B0.01682%20mol%7D%7B0.4%20L%7D%3D0.04205%20M)

1 mole of HCl gives 1 mole of hydronium ion and 1 mole of chloride ions in an aqueous solution.
Then 0.04205 mol/L of HCl will give:
of hydronium ions.
![[H_3O^+]=0.04205 M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D0.04205%20M)
![pH=-\log [H_3O^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH_3O%5E%2B%5D)
![pH=-\log [0.04205 M]=1.38](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5B0.04205%20M%5D%3D1.38%20)
The pH of the solution is 1.38.
Answer:
just a few days later this morning and Video is a bit more than
Explanation:
free fire in a good place for me to do it all in a great time for
First, draw the 2-hexene. Th is is a molecule of six carbons with a double bond in the second carbon:
CH3 - CH = CH2 - CH2 - CH2 - CH3
Secong, put one Br on the second carbon and one Br on the third carbon:
CH3 - CBr = CBr - CH2 - CH2 - CH3
Third, cis means that the two Br are placed in opposed positions, this is drawn with one Br up and the other down. So, you need to represent the position of the Br in the space:
H Br H H H
| | | | |
H - C - C = C - C - C - C - H
| | | | |
H Br H H H
The important fact to realize is that the two Br are in opposed sides of the molecule.
Answer:
The solute is the substance that is being dissolved,
Explanation:
A solution is a homogeneous mixture consisting of a solute dissolved into a solvent .
Answer:J , the answer is super giants