Dozen = 12,
ii. 1 score = 20
iii. 1 ream = 500
iv. 1 gross = 1.44
Answer:
Can you move a body in rigor mortis?
Rigor mortis -- the lay version of it is stiffening of the joints. It really had nothing to do with the joints. It's the lack of chemical in the body, ATP, which is Adenosine Triphosphate. It goes away and you can now move the extremities easily after rigor mortis is gone away.
Explanation:
Answer: 4Kcal
Explanation:
H= mcø
M=200g
C= 1 cal/g/°c
Ø= 40-20=20°c
H= 200*1*20= 4000calories= 4Kcal
Answer:
The answer is
<h2>112.912 kPa</h2>
Explanation:
The new pressure can be found by using the formula for Boyle's law which is

Since we are finding the new pressure

404.6 kPa = 404600 Pa
From the question we have

We have the final answer as
<h3>112.912 kPa</h3>
Hope this helps you
Answer: 1.414x10^24 molecules in 94.4g MgO
Explanation: molar mass MgO 40.204
molecules in 40.204 g MgO = avogadro number
molecules in 94.4 g MgO = (94.4/40.204)*avogadro number
(94.4/40.204)*6.02214076*10^23 = 14.14x10^23