Decreasing the distance between two objects having a considerable mass would increase the attraction on gravitation. The reverse is true that if you separate or inrease the objects distance would substantially decrease their gravitational attraction. Most object in our planet is held by its gravitational force towards it's center.
Answer:
Explanation:
We shall apply Doppler's effect of sound .
speaker is the source , Jason is the observer . Source is moving at 10 m /s , observer is moving at 6 m/s .
apparent frequency = 
V is velocity of sound , v₀ is velocity of observer and v_s is velocity of source and f_o is real frequency of source .
Here V = 340 m/s , v₀ is 6 m/s , v_s is 10 m/s . f_o = f
apparent frequency = 
= 
So m = 346 , n = 330 .
Answer: A little more that 5 Kg for a healthy person
Explanation: First, we know the following:
The regular adult has from 9 to 12 pints of blood. This is around 5 liters for a healthy male adult.
The human body is composed mostly on water, around 80%.
Blood is mostly composed on plasma, which makes blood thicker than water.
Knowing that, almost all the body is compose of water, it is safe to think that blood density should be near to that of water but higher.
The density on water is a know value. Which makes the following true:
<em>1 Liter of Water weights 1 Kg</em>
<em />
It could be said then, that the total mass of blood for a healthy person should be a little more that 5 kgs.
Answer:
Heat of vaporization will be 22.59 j
Explanation:
We have given mass m = 10 gram
And heat of vaporization L = 2.259 J/gram
We have to find the heat required to vaporize 10 gram mass
We know that heat of vaporization is given by
, here m is mass and L is latent heat of vaporization.
So heat of vaporization Q will be = 10×2.259 = 22.59 J
Answer:
Frequency – The frequency of a wave is the number of waves that pass a given point in a certain amount of time. Frequency is measured in units called hertz (Hz), and is defined as the number of waves per second. A wave that occurs every second has a frequency of 1 wave per second (1/s) or 1 Hz.