<em>The gravitational force between two objects is inversely proportional to the square of the distance between the two objects.</em>
The gravitational force between two objects is proportional to the product of the masses of the two objects.
The gravitational force between two objects is proportional to the square of the distance between the two objects. <em> no</em>
The gravitational force between two objects is inversely proportional to the distance between the two objects. <em> no</em>
The gravitational force between two objects is proportional to the distance between the two objects. <em> no</em>
The gravitational force between two objects is inversely proportional to the product of the masses of the two objects. <em> no</em>
The car travels at a speed of 25m/s.
<u>Explanation:</u>
Given-
Mass, m = 1500kg
Coefficient of friction, μk = 0.47
Distance, x = 68m
Speed, s = ?
We know,

and
F = μ X m X g
Therefore,
μ * m * g = m * a
μ * g = a
Let, g = 9.8m/s²
So,


We know,

where, v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance
If the car comes to rest, the final velocity, v becomes 0.
So,

The car travels at a speed of 25m/s.
Sound waves in air (and any fluid medium) are longitudinal waves because particles of the medium through which the sound is transported vibrate parallel to the direction that the sound wave moves.
The process of burning fuel is Combustion
Answer: Acceleration due to gravity
Explanation: Force, F = mg, is a vector quantity because the acceleration due to gravity, g, is a vector quantity. Explanation: F = mg Where m is the mass (in kilograms) of the object in question and g is the acceleration due to gravity. Mass is a scalar quantity; mass has no dependence on direction whatsoever.