the answers going to be A
The distance an object falls from rest through gravity is
D = (1/2) (g) (t²)
Distance = (1/2 acceleration of gravity) x (square of the falling time)
We want to see how the time will be affected
if ' D ' doesn't change but ' g ' does.
So I'm going to start by rearranging the equation
to solve for ' t '.
D = (1/2) (g) (t²)
Multiply each side by 2 : 2 D = g t²
Divide each side by ' g ' : 2 D/g = t²
Square root each side: t = √ (2D/g)
Looking at the equation now, we can see what happens
to ' t ' when only ' g ' changes:
-- ' g ' is in the denominator; so bigger 'g' ==> shorter 't'
and smaller 'g' ==> longer 't' .
-- They don't change by the same factor, because 1/g is inside
the square root. So 't' changes the same amount as √1/g does.
Gravity on the surface of the moon is roughly 1/6 the value
of gravity on the surface of the Earth.
So we expect ' t ' to increase by √6 = 2.45 times.
It would take the same bottle (2.45 x 4.95) = 12.12 seconds
to roll off the same window sill and fall 120 meters down to the
surface of the Moon.
What's now called "Conventional current" is thought of as the flow of positive charge, from the battery's positive terminal to its negative one.
But it turns out that positive charges don't flow. The physical flow of charge is the flow of electrons. They come out of the battery's negative terminal, and carry negative charge around the circuit to the battery's positive one.
Answer:
20 km/h
Explanation:
45 km ÷ 2.25 hours (15 mins is 0.25 hours)
= 20
20 km/h
Answer:
According to the Big Bang Theory, the density and temperature of the Universe is <u>lower</u> now than in the past.
<em>Hope</em><em> this</em><em> answer</em><em> correct</em><em> </em><em>:</em><em>)</em>