1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ad libitum [116K]
3 years ago
12

Express 34.0 cm in inches

Physics
1 answer:
bulgar [2K]3 years ago
7 0

Hello,

1 inch = 2 centimeters

2 centimeters = 1 inch

34 / 2 = 17

Answer: 34 centimeters is 17 inches!

You might be interested in
An object with a mass of 2.0 kg is accelerated at 5.0 m/s/s. the net force acting on the mass is
Vitek1552 [10]
First we need to know the equation:
F= Mass times acceleration
F = 2.0 kg times 5.0 m/s^2 
multiply them to get the net force!
F= 10 N 
N is newton 
Hope this heps
7 0
4 years ago
Read 2 more answers
Guys please help me out I’ll give extra points
zvonat [6]

Answer: h = 3.34 m

Explanation:

If the hat is thrown straight up, then at its highest point it has no motion and no kinetic energy. All energy is potential energy

PE = mgh

h = PE/mg = 4.92 / (0.150(9.81)) = 3.34352... ≈3.34 m

8 0
3 years ago
The base of a pyramid covers an area of 13.0 acres (1 acre = 43,560 ft2) and has a height of 481 ft. If the volume of a pyramid
Allisa [31]
V = 1/3 Bh v = 1/3 (13 ac)(43560ft^2/ac)(481ft) v = 90793560 ft^3 * 0.3048m/ft * 0.3048m/ft * 0.3048m/ft = 2570987m^3
3 0
3 years ago
Read 2 more answers
In a game of angry birds you launch a bird with an angle of 53 degrees to horizontal. Unfortunatly, its not a good shot and the
Alisiya [41]

Answer:

The maximum height covered is 3.25 m.

The horizontal distance covered is 9.81 m.

The total time in the air is 1.63 seconds.

Explanation:

The launch speed, u_0= 10 m/s.

Angle of launch with the horizontal, \theta = 53 ^{\circ}

So, the vertical component of the initial velocity,

u_0\sin\theta=10 \sin 53 ^{\circ}\cdots(i).

The horizontal component of the initial velocity,

u_0\cos\theta=10 \cos 53 ^{\circ}

Let, t be the time of flight, to the horizontal distance covered

D=10 \cos (53 ^{\circ})t\cdots(ii).

Not, applying the equation of motion in the vertical direction.

s= ut +\frac 1 2 at^2

Where s is the displacement in time t, u is the initial velocity and a is the acceleration.

In this case, u =10 \sin 53 ^{\circ} (from equation (i), s=0 (as the final height is same as the launch height) and a = -9.81 m/s^2 (negative sign is due to the downward direction).

\Rightarrow 0 = 10 (\sin 53 ^{\circ})t-\frac 1 2 (9.81)t^2

\Rightarrow t= \frac {2\times 10 (\sin 53 ^{\circ})}{9.81}=1.63 seconds.

So, the total time in the air is 1.63 seconds.

From equation (i),

Total horizontal distance covered is

D=10 \cos (53 ^{\circ})\times 1.63 = 9.81 m.

Now, for the maximum height, H, applying the equation of motion as

v^2=u^2+2as

Here, v is the final velocity and v=0 (at the maximum height), and h=H.

So, 0^2=(10 \sin 53 ^{\circ})^2-2(9.81)H

\Rightarrow H = \frac {(10 \sin 53 ^{\circ})^2}{2\times 9.81}

\Rightarrow H = 3.25 m.

Hence, the maximum height covered is 3.25 m.

8 0
3 years ago
If an object is to rest on an incline without slipping, then friction must equal the component of the weight of the object paral
leonid [27]

Answer:

\theta = tan^{-1}\mu

Explanation:

As we know that if the object is placed on the inclined plane then the force of friction on the object is counterbalanced by the component of the weight of the object along the inclined plane.

So we can say

F_f = mgsin\theta

now if we increase the inclination of the plane then the component of the weight weight along the inclined plane will increase and hence the friction force will also increase.

As we know that the limiting value or the maximum value of friction force at the static condition is given by

F_f = \mu N

N = mg cos\theta

so we have

F_f = \mu (mg cos\theta)

so we will have

mg sin\theta = \mu (mg cos\theta)

so now we have

tan\theta = \mu

so maximum possible angle of the inclined plane is

\theta = tan^{-1}\mu

3 0
3 years ago
Other questions:
  • Pretend a system is having Transverse waves. And those transverse waves on a string have wave speed 8.00 m/s amplitude 0.0700m a
    15·1 answer
  • Which of these help the light from the Sun to reach Earth through the vacuum of space?
    11·1 answer
  • Rounding<br> What is 13.428 to the nearest tenths positions
    12·1 answer
  • Objects falling through the air experience a type of friction called air resistance. true or false
    8·2 answers
  • Which of the following microscope parts should routinely be adjusted to control the light source and provide optimal illuminatio
    9·1 answer
  • A force in the +x-direction with magnitude F(x)=18.0N−(0.530N/m)x is applied to a 8.40 kg box that is sitting on the horizontal,
    5·1 answer
  • A tortoise and hare start from rest and have a race. As the race begins, both accelerate forward. The hare accelerates uniformly
    7·1 answer
  • Which of the following is NOT an insulator?
    7·2 answers
  • What happens to Roberto’s kinetic energy when he runs twice as fast?
    6·1 answer
  • True or False: Any wavelength of light would work for this experiment. Explain your response, including the term quantum or quan
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!