Answer:
a)1.404 E-10 m^2/s
b)1.438 E-12 m^2/s
Explanation:
Diffusion Coefficients can be calculated at different temperatures taking into account the energy of the diffusive process, remember that this process takes place in the interstices of the solid, and gets with higher temperatures due to the higher kinetic energy of the particles.

a) For α-iron (BCC)

b) For γ-iron (FCC)

Answer : The value of
for
is
.
Solution : Given,
Solubility of
in water = 
The barium carbonate is insoluble in water, that means when we are adding water then the result is the formation of an equilibrium reaction between the dissolved ions and undissolved solid.
The equilibrium equation is,

Initially - 0 0
At equilibrium - s s
The Solubility product will be equal to,
![K_{sp}=[Ba^{2+}][CO^{2-}_3]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BBa%5E%7B2%2B%7D%5D%5BCO%5E%7B2-%7D_3%5D)

![[Ba^{2+}]=[CO^{2-}_3]=s=4.4\times 10^{-5}mole/L](https://tex.z-dn.net/?f=%5BBa%5E%7B2%2B%7D%5D%3D%5BCO%5E%7B2-%7D_3%5D%3Ds%3D4.4%5Ctimes%2010%5E%7B-5%7Dmole%2FL)
Now put all the given values in this expression, we get the value of solubility constant.

Therefore, the value of
for
is
.
Answer:
The carbons of the acetyl group oxidize which generate CO2, and in turn H2O.
Explanation:
The pyruvic acid that is generated during glycolysis enters the mitochondria. Inside this organelle, the acid molecules undergo a process called oxidative decaborxylation in which an enzyme of several cofactors is involved, one of which is coenzyme A. Pyruvic acid is transformed into an acetyl molecule and these are been introduced to the begining of the Krebs Cycle where the acetyl-group (2C) from acetyl-CoA is transferred to oxaloacetate (4C) to produce citrate (6C). As the molecule cycles the two carbons of the acetyl oxidize and are released in the form of CO2. Then the energy of the Krebs cycle becomes sufficient to reduce three NAD +, which means that three NADH molecules are formed. Although a small portion of energy is used to generate ATP, most of it is used to reduce not only the NAD + but also the FAD which, if oxidized, passes to its reduced state, FADH2
Answer:
(B) F⁻, HCOOH
Explanation:
(A) CH₄, HCOOH
(B) F⁻, HCOOH
(C) F⁻, CH₃-O-CH₃
The hydrogen bonds are formed when the hydrogen is found between two electronegative atoms such as oxygen (O), nitrogen (N) or florine (F).
O····H-O, F····H-O, O····H-N
(A) CH₄, HCOOH
- here methane CH₄ is not capable to form hydrogen bond with water
- formic acid HCOOH can form hydrogen bonds with water
H-C(=O)-O-H····OH₂
(B) F⁻, HCOOH
-both floride (F⁻) and formic acid can form hydrogen bonds with water
F····OH₂
H-C(=O)-O-H····OH₂
(C) F⁻, CH₃-O-CH₃
- dimethyl-ether CH₃-O-CH₃ is not capable to form hydrogen bond with water
- floride (F⁻) can form hydrogen bonds with water
F····OH₂
Explanation:
Percentage composition = 2/18 = 11.11%.