Given the final velocity (Vf) and the acceleration (a), the distance that should be traveled by the plane is calculated through the equation,
d = (Vf² - Vi²) / 2a
V1 should be zero because the light plane started the motion from rest. Substituting the given values,
d = ((33 m/s)² - 0)) / 2(3 m/s²)
The distance is therefore equal to 181.5 meters.
(a) Determine the circumference of the Earth through the equation,
C = 2πr
Substituting the known values,
C = 2π(1.50 x 10¹¹ m)
C = 9.424 x 10¹¹ m
Then, divide the answer by time which is given to a year which is equal to 31536000 s.
orbital speed = (9.424 x 10¹¹ m)/31536000 s
orbital speed = 29883.307 m/s
Hence, the orbital speed of the Earth is ~29883.307 m/s.
(b) The mass of the sun is ~1.9891 x 10³⁰ kg.
Explanation:
(4566 m / 4 min) × (1 km / 1000 m) × (60 min / h) = 68.49 km/h
<span>Pitch and frequency are more or less the same thing - high pitch = high frequency.
The freqency of vibration of a string f = 1/length (L) so as length decreases the frequency increases.</span>
Http://www.calculator.net/pace-calculator.html?ctype=distance&ctime=05%3A00%3A00&cdistance=5&cdistanceunit=Miles&cpace=02%3A00%3A00&cpaceunit=tpm&printit=0&x=87&y=24 a pace calculator