Answer:
well no, but yes
Explanation:
depends on your religion tbh
Answer:
The total work done by the two tugboats on the supertanker is 3.44 *10^9 J
Explanation:
The force by the tugboats acting on the supertanker is constant and the displacement of the supertanker is along a straight line.
The angle between the 2 forces and displacement is ∅ = 15°.
First we have to calculate the work done by the individual force and then we can calculate the total work.
The work done on a particle by a constant force F during a straight line displacement s is given by following formula:
W = F*s
W = F*s*cos∅
With ∅ = the angles between F and s
The magnitude of the force acting on the supertanker is F of tugboat1 = F of tugboat 2 = F = 2.2 * 10^6 N
The total work done can be calculated as followed:
Wtotal = Ftugboat1 s * cos ∅1 + Ftugboat2 s* cos ∅2
Wtotal = 2Fs*cos∅
Wtotal = 2*2.2*10^6 N * 0.81 *10³ m s *cos15°
Wtotal = 3.44*10^9 Nm = <u>3.44 *10^9 J</u>
<u />
The total work done by the two tugboats on the supertanker is 3.44 *10^9 J
Hi there!
We can use the following (derived) equation to solve for the final velocity given height:
vf = √2gh
We can rearrange to solve for height:
vf² = 2gh
vf²/2g = h
Plug in the given values (g = 9.81 m/s²)
(13)²/2(9.81) = 8.614 m
We can calculate time using the equation:
vf = vi + at, where:
vi = initial velocity (since dropped from rest, = 0 m/s)
a = acceleration (in this instance, due to gravity)
Plug in values:
13 = at
13/a = t
13/9.81 = 1.325 sec
Answer:
When she stops at a fast pace the energy and wind will take the cup forward and it will most likeley brake
Explanation:
I'm not entirely sure this is what you were looking for but I hope this helped!
PLEASE MARK ME AS BRAINLIEST