Use the projectile motion equations
H = v^2 x sin^2(θ) ÷ 2g
t = 2 x v x sinθ ÷ g
R = v^2 x sin2θ ÷ g
Answer:
Yes, the answer on <em>how far off the ground a typical truck is happens to be</em> physically realistic.
Explanation:
This concept could be explained with when someone is viewing a picture from a particular distance. The farther the person is from the picture, the smaller the details of the picture and the higher they picture would be unappriciated and vice versa.
Likewise the small truck on ground. <em>The distance off ground the truck is being viewed, the smaller the truck would become.</em>
Answer:
a) 25.5 µH
b) 22.95 mV
Explanation:
Induced emf in a inductor is given by
E = L * di/dt, where
E is the voltage of the circuit
L is the inductance of the circuit
di/dt if the rate of inductance
A
So we have
0.0037 = L * 145
L = 0.0037 / 145
L = 0.0000255
L = 25.5 µH
B
i(t) = 225t²
Recall that
E = L * di/dt, so that
E = 25.5 µH * |225t²|
Differentiating with respect to t, we have
E = 25.5 * 2 * 225t
E = 25.5 * 450t
Solving for t = 2,we get
E = 25.5 * 450(2)
E = 25.5 * 900
E = 22950 µV or
E = 22.95 mV
Answer: A glass object receives a positive charge of +3 nC by rubbing it with a silk cloth. In the rubbing process electrons been removed from it.
Explanation:
It is known that for every atom the protons and neutrons reside in the nucleus of the atom. Whereas electrons move outside the nucleus of an atom. As a result, electrons are able to transfer more easily from one substance to another as compared to the protons.
This is because protons are tightly held by the nucleus of an atom. Whereas electrons are mobile in nature and hence, they can easily move.
Therefore, positive charge on the glass develops due to the removal of electrons from it.
thus, we can conclude that in the given process electrons been removed from the glass object.
Answer: Their final relative velocity is -0.412 m/s.
Explanation:
According to the law of conservation,

Putting the given values into the above formula as follows.



v = 
= -0.412 m/s
Thus, we can conclude that their final relative velocity is -0.412 m/s.