B.
<span>genotype; phenotype
</span><span>Genetic variation determines inherited differences between individuals . Our height or eye color are inherited from our parents, but our phenotype is also affected by environment such as the food we eat (diet), drugs we take, toxins surrounding us, climate, location, culture, physical accidents and lifestyle.</span>
Answer:
285.4 moles of gas are in a 35.0 L scuba canister if the temperature of the canister is 27.3 °C and the pressure is 200.8 atm.
Explanation:
An ideal gas is a theoretical gas that is considered to be composed of randomly moving point particles that do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P * V = n * R * T
In this case:
- P= 200.8 atm
- V= 35 L
- n=?
- R= 0.082

- T= 27.3 C= 300.3 K (being O C= 273 K)
Replacing:
200.8 atm* 35 L= n* 0.082
* 300.3 K
Solving:

n= 285.4 moles
<u><em>285.4 moles of gas are in a 35.0 L scuba canister if the temperature of the canister is 27.3 °C and the pressure is 200.8 atm.</em></u>
<u><em></em></u>
The moles of NaOH used in the titration would be 0.00177 moles while the molarity of the vinegar will be 0.885 M
<h3>Titration calculation</h3>
Recall that: mole = molarity x volume
In this case, the molarity of the NaOH= 0.1 M
Volume of NaOH = 17.7 - 0.0 = 17.7 mL
Mole of NaOH used = 0.1 x 17.7/1000 = 0.00177 moles.
Since NaOH and vinegar have 1:1 mole ratio, the mole of vinegar will also be 0.00177 moles.
Molarity of vinegar = mole/volume = 0.00177/0.002 = 0.885 M
More on titration calculations can be found here: brainly.com/question/9226000
Answer:
2-iodo-2-methylpentane > 2-bromo-2-methylpentane > 2-chloro-2-metylpentane > 3-chloropentane.
Explanation:
At a substitution reaction by SN1, the alkyl halide must lose its halide, and then an intermediary will be formed: a carbonium, which is an alkyl group with a positive charge in the carbon. The halide lost will be formed the halide ion, which is also an intermediary of the reaction.
The reactivity depends on the stability of the intermediaries (first of the carbonium, and second of the halide ion). As more bonded with carbons is the carbonium, more stable it is. The order of stability of the halides ions is from their electronegativity: as lower is it, as stable is the ion. The order is then: I⁻ > Br⁻ > Cl⁻ > F⁻.
2-bromo-2-methylpentane, 2-chloro-2-metylpentane, and 2-iodo-2-methylpentane, will form a 3-degree intermediary, so they will be more reactive than 3-chloropentane, which form a 2-degree intermediary. So, for the order of the stability of the halide ions, the order of reactivity is:
2-iodo-2-methylpentane > 2-bromo-2-methylpentane > 2-chloro-2-metylpentane > 3-chloropentane.