Answer:
-1,103.39KJ/mol
Explanation:
We use the subtract the standard enthalphies of formation of the reactants from that of the products. It must be taken into consideration that the enthalpy of formation of elements and their molecules alone are not taken into consideration. Hence, what we would be considering are the standard enthalpies of formation of H2S, H2O and SO2.
In places where we have more than one mole, we multiply by the number of moles as seen in the balanced chemical equations.
The standard enthalpies of the molecules above are as follows:
H2S = -20.63KJ/mol
H2O = -285.8KJ/mol
SO2 = -296.84KJ/mol
O2 = 0KJ/mol
ΔrH⦵ = [2ΔfH⦵(H2O) + 2 ΔfH⦵(SO2)] − [ΔfH⦵(H2S) + 3
ΔfH⦵(O2)]
ΔrH⦵ =[(2 × -285.8) + (2 × -296.84)]
-[ 3 × -20.63)]
= (-571.6 - 593.68 + 61.89) = -1,103.39KJ/mol
Answer:
Niels Bohr, refined the model of an atom by proposing a quantized shell structure atomic model in order to describe how the electrons are able to maintain stable orbits around the nucleus
Based on the predictions of classical mechanics the electron motion of the Rutherford model was unstable as the electrons where expected to have lost some energy during motion and thus having to come rest in the nucleus
According to the modification by Neils Bohr in 1913, electrons move in shells or orbits of fixed energy and emission of electromagnetic radiation takes place only when electrons changes the orbit in which they move
Explanation:
Answer:
isolated system (plural isolated systems) (physics) A system that does not interact with its surroundings. Depending on context this may mean that its total energy and/or momentum stay constant.
Explanation:
An isolated system is a thermodynamic system that cannot exchange either energy or matter outside the boundaries of the system. ... The system may be enclosed such that neither energy nor mass may enter or exit.
is there both?
Answer:
He will decide which drink is to be served to whom, by the use of litmus paper.
Explanation:
The litmus paper is the most common indicator to determine the acidity or basicity of a solution. Blue litmus paper changes its color to red when a solution changes from basic to acidic while red litmus paper changes its color to blue when the opposite occurs (acid → basic).
First of all the litmus paper strip, pH indicator, is immersed in a solution and allowed to pass between 10 and 15 seconds while keeping the strip submerged. Afterwards it is removed, and then the strip compares the color. If the color is diffuse, there is a color scale where it is determined which solution has alkaline or acidic pH