C) 3 Moles
This is because of the molecular structure shown in the image
Answer:
i think its d im not sure
Explanation:
a) Copper is at a higher temperature, so the flow of heat will take place from copper to iron. Heat is a form of energy, which always flows from higher temperature to lower temperature.
b) To determine the actual final temperature, the heat capacity of the calorimeter must be known. A calorimeter constant refers to a constant, which quantifies the heat capacity of a calorimeter. It may be determined by using a known amount of heat to the calorimeter and measuring the corresponding change in temperature of the calorimeter.
Answer:
![[Cu^{2+}]=0.041 M](https://tex.z-dn.net/?f=%5BCu%5E%7B2%2B%7D%5D%3D0.041%20M)
Explanation:
Hello!
In this case, since the molarity of a solution is defined in terms of the moles of the solute and the volume of solution, given that the concentration of Cu(NH₃)₄²⁺ is 0.041 M, and there is only one copper atom per Cu(NH₃)₄²⁺ ion, we can compute the concentration of Cu²⁺ as shown below:
![[Cu^{2+}]=0.041\frac{molCu(NH_3)_4^{2+}}{L}*\frac{1molCu^{2+}}{1molCu(NH_3)_4^{2+}} =0.041 \frac{molCu(NH_3)_4^{2+}}{L}](https://tex.z-dn.net/?f=%5BCu%5E%7B2%2B%7D%5D%3D0.041%5Cfrac%7BmolCu%28NH_3%29_4%5E%7B2%2B%7D%7D%7BL%7D%2A%5Cfrac%7B1molCu%5E%7B2%2B%7D%7D%7B1molCu%28NH_3%29_4%5E%7B2%2B%7D%7D%20%3D0.041%20%5Cfrac%7BmolCu%28NH_3%29_4%5E%7B2%2B%7D%7D%7BL%7D)
![[Cu^{2+}]=0.041 M](https://tex.z-dn.net/?f=%5BCu%5E%7B2%2B%7D%5D%3D0.041%20M)
Best regards!