Answer:a) 0.1 mole. b) 4g. c) 2% d) 196 mL
Explanation: in 200mL , 0.1mole
mw NaOH = 40g/mol —> 4g in 0.1 mole
4g in 200mL so 2g in 100mL
density NaOH = 1g/mL so if 4g in 200 mL, 4mL , 196 mL water
Answer:

General Formulas and Concepts:
<u>Chemistry - Gas Laws</u>
- STP (Standard Conditions for Temperature and Pressure) = 22.4 L per mole at 1 atm, 273 K
- Charles' Law:

Explanation:
<u>Step 1: Define</u>
Initial Volume: 5.0 L H₂ gas
Initial Temp: 273 K
Final Temp: 985 K
Final Volume: ?
<u>Step 2: Solve for new volume</u>
- Substitute:

- Cross-multiply:

- Multiply:

- Isolate <em>x</em>:

- Rewrite:

<u>Step 3: Check</u>
<em>We are given 2 sig figs as the smallest. Follow sig fig rules and round.</em>
<em />
<em />
Answer:
1.62
Explanation:
From the given information:
number of moles of benzamide 
= 0.58 mole
The molality = 

= 0.6837
Using the formula:

where;
dT = freezing point = 27
l = Van't Hoff factor = 1
kf = freezing constant of the solvent
∴
2.7 °C = 1 × kf × 0.6837 m
kf = 2.7 °C/ 0.6837m
kf = 3.949 °C/m
number of moles of NH4Cl = 
= 1.316 mol
The molality = 
= 1.5484
Thus;
the above kf value is used in determining the Van't Hoff factor for NH4Cl
i.e.
9.9 = l × 3.949 × 1.5484 m

l = 1.62
1) Write the balaced chemical equation:
H2 + 2O2 → 2H2O
2) Infere the molar ratios:
1 mol H2 : 2 mol of water
3) Make the calculus as the direct proportion relation:
[2 mol H2O] / [1 mol H2] * 7 mol H2 = 14 mol H2
As you see you produce the double number of moles of H2O than number of moles of H2 used.
Answer: 14 moles
The products will be 
<h3>Chemical reactions</h3>
Zn is higher than hydrogen in the reactivity series. Thus, it will be able to displace hydrogen from the acid.
The equation of the reaction becomes: 
Hydrogen gas is released as a result. In fact, it is one of the ways of preparing hydrogen gas in the laboratory.
More on chemical reactivity can be found here: brainly.com/question/9621716
#SPJ1