The moles of gas in the bottle has been 0.021 mol.
The ideal gas has been given as the gas where there has been negligible amount of interatomic collisions. The ideal gas equation has been given as:

<h3>Computation for the moles of gas</h3>
The gi<em>ve</em>n gas has standard pressure, 
The volume of the gas has been, 
The temperature of the gas has been, 
Substituting the values for the moles of gas, <em>n:</em>
<em />
<em />
The moles of gas in the bottle has been 0.021 mol.
Learn more about ideal gas, here:
brainly.com/question/8711877
Answer:
<u>STEP I</u>
This is the balanced equation for the given reaction:-

<u>STEP II</u>
The compounds marked with (aq) are soluble ionic compounds. They must be
broken into their respective ions.
see, in the equation KOH, H2SO4, and K2SO4 are marked with (aq).
On breaking them into their respective ions :-
- 2KOH -> 2K+ + 2OH-
- H2SO4 -> 2H+ + (SO4)2-
- K2SO4 -> 2K+ + (SO4)2-
<u>STEP III</u>
Rewriting these in the form of equation

<u>STEP </u><u>IV</u>
Canceling spectator ions, the ions that appear the same on either side of the equation
<em>(note: in the above step the ions in bold have gotten canceled.)</em>

This is the net ionic equation.
____________________________

- KOH has been taken as aqueous because the question informs us that we have a solution of KOH. by solution it means that KOH has been dissolved in water before use.
[Alkali metal hydroxides are the only halides soluble in water ]
The two control bases would be water and salt.
Answer : Electron P has greater energy difference than the Electron N.
Explanation :
Wavelength range of violet light = 400 - 500 nm
Wavelength range of orange light = 600 - 700 nm
The Planck's equation is,

where,
E = energy of light
c = speed of light
= wavelength of light
According to the Planck's equation, wavelength and energy follow inverse relation. As the wavelength increases, energy decreases.
From the given spectrum, the wavelength of violet light is less. We conclude that When electron P gives violet light on transition it means that energy difference between the energy level was high.
From the given spectrum, the wavelength of orange light is more. We conclude that When electron N gives orange light on transition it means that energy difference between the energy level was low.
So, Electron P which gives violet light on transition has greater energy difference than the Electron N.
Answer:
Carbonyl
Explanation:
While the diagram is slightly unclear, the molecule most likely being shown is a carbonyl. A molecule is a carbonyl when there is a carbon double-bonded to an oxygen.