Explanation:
Significant figure is the measure of how accurately something can be measured. It carries meaning contributing to its measurement resolution. It is important to use proper number of significant figures to get a precise measurement. For example, if we use a meter stick then measurements like 0.874 meters, or 0.900 meters, are good because they indicate that we can measure to the nearest millimeter. Whereas a measurement like 0.8 does not tell that a meter stick can measure to the nearest millimeter.
Answer:
Rate = k . [B]² . [C]
Explanation:
The dependence of the reaction rate on the concentration of the reactants is given by the reaction order of each one, as shown in the rate equation.
![Rate=k.[A]^{x} .[B]^{y} .[C]^{z}](https://tex.z-dn.net/?f=Rate%3Dk.%5BA%5D%5E%7Bx%7D%20.%5BB%5D%5E%7By%7D%20.%5BC%5D%5E%7Bz%7D)
where,
k is the rate constant
x, y, z are the reaction orders.
- <em>The rate of reaction is not affected by changing the concentration of species A.</em> This means that the reaction order for A is x = 0 since when its concentration changes, the rate stays the same.
- <em>Leaving all other factors identical, doubling the concentration of species B increases the rate by a factor of 4.</em> This means that the reaction order for B is y = 2, so when the concentration is doubled, the new rate is 2² = 4 times the initial rate.
- The rate of the reaction is linearly dependent on the concentration of C. This means that the reaction order for C is z = 1, that is, a linear dependence.
All in all, the rate equation is:
Rate = k . [B]² . [C]
The molecular weight of the substance.
Answer:
a. 53.5 g/mol
b. 80.06 g/mol
c. 133.33 g/mol
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Molar Mass - 1 mol per <em>x</em> grams substance
Explanation:
<u>Step 1: Define</u>
a. NH₄Cl
b. NH₄NO₃
c. AlCl₃
<u>Step 2: Find masses</u>
Molar Mass of N - 14.01 g/mol
Molar Mass of H - 1.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of Al - 26.98 g/mol
Molar Mass of Cl - 35.45 g/mol
<u>Step 3: Calculate compound masses</u>
Molar Mass of NH₄Cl - 14.01 g/mol + 4(1.01 g/mol) + 35.45 g/mol = 53.5 g/mol
Molar Mass of NH₄NO₃ - 2(14.01 g/mol) + 4(1.01 g/mol) + 3(16.00 g/mol) = 80.06 g/mol
Molar Mass of AlCl₃ - 26.98 g/mol + 3(35.45 g/mol) = 133.33 g/mol