What types of atoms typically form covalent bonds?
The correct answer:
d) Nonmetals with nonmetals, because their difference in electronegativity is below 1.7.
En example to explain:
An example of a covalent bonding: HCl -> 2 nonmentals
-> a difference in electronegativity less than 1.7:
EN(Cl) = 3.0 and EN (H) = 2.1 (you can search these values in a periodic table)
/\EN = 3.0 - 2.1 = 0.9
0.9 < 1.7
I hope this helped you out!
Answer:
Energy is absorbed, and an emission line is produced.
Explanation:
Electrons are present and revolving continuously in the orbits that are present around the nucleus. The energy of electron are fixed and unable to move to other orbits due to the strong attractive force of the proton which is present in the nucleus of the atom. If the electron wants to jump from the first energy level to the second energy level, so the electron has to absorb enough energy which can overcome the attractive force of proton.
White phosphorus melts and then vaporizes at high temperatures. The gas effuses at a rate that is 0.404 times that of neon in the same apparatus under the same conditions-There are 4 atoms of P in the molecule
Explanation:
Ar=30,97g/mol
/
=
=0,404
0,404=
=20,18/30,97*x
X=20,18/30,97*0,163
X=4
There are 4 atoms of P in the molecule
White phosphorus melts and then vaporizes at high temperatures. The gas effuses at a rate that is 0.404 times that of neon in the same apparatus under the same conditions-There are 4 atoms of P in the molecule
What are stars made of? Basically, stars are big exploding balls of gas, mostly hydrogen and helium. Our nearest star, the Sun, is so hot that the huge amount of hydrogen is undergoing a constant star-wide nuclear reaction, like in a hydrogen bomb.
In a spiral galaxy like the Milky Way, the stars, gas, and dust are organized into a "bulge," a "disk" containing "spiral arms," and a "halo." Elliptical galaxies have a "bulge-shape" and a "halo," but do not have a "disk.
Hope it helped
The original question is to find the pH and the pOH of 0.023 M of perchloric acid.
Answer:
pH = 1.638
pOH = 12.362
Explanation:
1- getting the pH:
pH can be calculated using the following rule:
pH = -log[H+]
Since the given solution is an acid, this means that [H+] is the same as the concentration of the solution.
This means that:
[H+] = 0.023
Substitute in the above equation to get the pH as follows:
pH = -log[0.023]
pH = 1.638
2- getting the pOH:
We know that:
pH + pOH = 14
We have calculated that pH = 1.638.
Substitute in the above equation to get the pOH as follows:
pOH + 1.638 = 14
pOH = 14 - 1.638
pOH = 12.362
Hope this helps :)