Answer:
the mark of the broken end is 2.6 cm so, we use the scale from the next full mark i.e. 3cm
Explanation:
<em>we </em><em>now </em><em>measure</em><em> </em><em>the </em><em>length</em><em> </em><em>of </em><em>the </em><em>pencil</em><em> </em><em>by </em><em>keeping </em><em>the </em><em>3</em><em> </em><em>c</em><em>m</em><em> </em><em>mark </em><em>of </em><em>the </em><em>scale</em><em> </em><em>at </em><em>it's</em><em> </em><em>left </em><em>end.</em>
<em>The </em><em>3</em><em> </em><em>cm </em><em>value </em><em>is </em><em>then </em><em>subtracted</em><em> </em><em>from </em><em>the </em><em>scale</em><em> </em><em>reading</em><em> </em><em>at </em><em>the </em><em>right</em><em> </em><em>side </em><em>end </em><em>of </em><em>the </em><em>pencil</em><em> </em><em>to </em><em>obtain </em><em>the </em><em>correct</em><em> </em><em>length</em><em> </em><em>of </em><em>the </em><em>pencil.</em><em> </em><em>✏️</em>
<em>(</em><em>i </em><em>i </em><em>)</em><em> </em>place the scale in the contact with object along it's length
(2) Your eyes must be exactly in front of the point where the measurements to be taken.
Hope_it_helps_mga_ka_joiners_mwehehe
Answer:force equals to rate of change of momentum
Explanation:
F=force
t=time
m=mass
v=final velocity
u=initial velocity
(mv-mu)/t=rate of change of momentum
Force=rate of change of momentum
F=(mv-mu)/t
Since this is a distance/time graph, the speed at any time is the slope
of the part of the graph that's directly over that time on the x-axis.
At time t1 = 2.0 s
That's in the middle of the first segment of the graph,
that extends from zero to 3 seconds.
Its slope is 7/3 . v1 = 7/3 m/s .
At time t2 = 4.0 s
That's in the middle of the horizontal part of the graph
that runs from 3 to 6 seconds.
Its slope is zero.
v2 = zero .
At time t3 = 13 s.
That's in the middle of the part of the graph that's sloping down,
between 11 and 16 seconds.
Its slope is -3/5 . v3 = -0.6 m/s .
Answer:
Answer: It takes 5,730 years for half the carbon-14 to change to nitrogen; this is the half-life of carbon-14. After another 5,730 years only one-quarter of the original carbon-14 will remain