We know that the average speed is simply the ratio of the
total distance travelled over the total duration of the trip.
total distance = 500 mi + 380 mi + 600 mi
total distance = 1,480 mi
total time = 10 h + 8 h + 15 h
total time = 33 h
So the average speed is therefore:
average speed = 1,480 mi / 33 h
<span>average speed = 44.85 mi / h</span>
Answer:
R = 1.2295 10⁵ m
Explanation:
After reading your problem they give us the diameter of the lens d = 4.50 cm = 0.0450 m, therefore if we use the Rayleigh criterion for the resolution in the diffraction phenomenon, we have that the minimum separation occurs in the first minimum of diffraction of one of the bodies m = 1 coincides with the central maximum of the other body
θ = 1.22 λ / D
where the constant 1.22 leaves the resolution in polar coordinates and D is the lens aperture
how angles are measured in radians
θ = y / R
where y is the separation of the two bodies (bulbs) y = 2 m and R the distance from the bulbs to the lens
R =
let's calculate
R =
R = 1.2295 10⁵ m
Rutherford's experiment<span> utilized positively charged alpha particles (He with a +2 charge) which were deflected by the dense inner mass (nucleus). The conclusion that could be formed from this result was that </span>atoms<span> had an inner core which contained most of the mass of an </span>atom<span> and was positively charged.</span>
It’s frequency is high and microwaves can pass through the atmosphere of the Earth.