1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jasenka [17]
3 years ago
9

A murder in a downtown office building has been widely publicized. You’re a police detective and receive a phone call from a dig

ital forensics investigator employed by the police department. His name is Gary Owens, and he says he has information that might relate to the murder case. Gary says he ran across a few files while investigating another case at a company in the same office building. Considering the plain view doctrine, what procedures might you and he, as public officials, have to follow? Write a one-page paper detailing what you might do.
Engineering
2 answers:
BaLLatris [955]3 years ago
7 0

Answer:

Considering the plain view doctrine, which is an exception to the warrant requirement of the Fourth Amendment, is applied by law enforcement officers and courts who can seize evidence of a crime without a warrant, if the officer observes the evidence in plain view.

Explanation:

For any digital information related to a murder case that has been seized under the plain view doctrine to be used to convict you of a crime, has to comply with three conditions:

1.  The digital evidence must be in out in the open, and easily observable by the officer, this is what "plain view" refers to.

2. The officer must have a legal right to be where he got the information related to the case.

3. The 'incriminating' character of the information must be a clear hint of the murder to fall under the plain view doctrine and the officer´s experience will help him determining whether the information is evidence or not, upon probable cause related to a crime.

Mrac [35]3 years ago
5 0

Answer:

Examining a murder is a matter for the law enforcement. We have to remember all facets of murder whenever investigating the case. First, we'll try to collect all of the victim's details. If we get a contact from the computer forensic investigator Mr. Gray Owens who looked through the business's records to find out the facts of the killing so there was a privacy breach.  

The business was based in the same place the murder happened in.

Secondly, after receiving the reports from the prosecutor, we should tell our senior about this knowledge and get a warrant from the court for further investigation, since there are chances that the breach of the policy leads to the person's murder.

And, instead we're going to make the corporate investigator a lawyer by getting all the specifics of the policy violation and trying to find out the person who breached the policy. The employer has the right to access any of the employee's program or application on its computer. The employee has no right to privacy in the company, if he / she works on the work computer.

You might be interested in
The dam cross section is an equilateral triangle, with a side length, L, of 50 m. Its width into the paper, b, is 100 m. The dam
lisabon 2012 [21]

Answer:

Explanation:

In an equilateral trinagle the center of mass is at 1/3 of the height and horizontally centered.

We can consider that the weigth applies a torque of T = W*b/2 on the right corner, being W the weight and b the base of the triangle.

The weigth depends on the size and specific gravity.

W = 1/2 * b * h * L * SG

Then

Teq = 1/2 * b * h * L * SG * b / 2

Teq = 1/4 * b^2 * h * L * SG

The water would apply a torque of elements of pressure integrated over the area and multiplied by the height at which they are apllied:

T1 = \int\limits^h_0 {p(y) * sin(30) * L * (h-y)} \, dy

The term sin(30) is because of the slope of the wall

The pressure of water is:

p(y) = SGw * (h - y)

Then:

T1 = \int\limits^h_0 {SGw * (h-y) * sin(30) * L * (h-y)} \, dy

T1 = \int\limits^h_0 {SGw * sin(30) * L * (h-y)^2} \, dy

T1 = SGw * sin(30) * L * \int\limits^h_0 {(h-y)^2} \, dy

T1 = SGw * sin(30) * L * \int\limits^h_0 {(h-y)^2} \, dy

T1 = SGw * sin(30) * L * \int\limits^h_0 {h^2 - 2*h*y + y^2} \, dy

T1 = SGw * sin(30) * L * (h^2*y - h*y^2 + 1/3*y^3)(evaluated between 0 and h)

T1 = SGw * sin(30) * L * (h^2*h - h*h^2 + 1/3*h^3)

T1 = SGw * sin(30) * L * (h^3 - h^3 + 1/3*h^3)

T1 = 1/3 * SGw * sin(30) * L * h^3

To remain stable the equilibrant torque (Teq) must be of larger magnitude than the water pressure torque (T1)

1/4 * b^2 * h * L * SG > 1/3 * SGw * sin(30) * L * h^3

In an equilateral triangle h = b * cos(30)

1/4 * b^3 * cos(30) * L * SG  > 1/3 * SGw * sin(30) * L * b^3 * (cos(30))^3

SG > SGw * 4/3* sin(30) * (cos(30))^2

SG > 1/2 * SGw

For the dam to hold, it should have a specific gravity of at leas half the specific gravity of water.

This is avergae specific gravity, including holes.

6 0
2 years ago
Need help solving math problem using integration
notka56 [123]
Ummm did you try to add or subtract and multiply or divide that can get your answer
8 0
2 years ago
Check the level of motor oil in your engine by ?
Usimov [2.4K]

Answer:

cpct gvxjjxjhdfjokjdzfjiyddzzsjhxf

6 0
1 year ago
The term variation describes the degree to which an object or idea differs from others of the same type or from a standard.
AfilCa [17]
The answer is true. Thank me later<3
5 0
2 years ago
Read 2 more answers
2. A counter flow tube-shell heat exchanger is used to heat a cold water stream from 18 to 78oC at a flow rate of 1 kg/s. Heatin
Anastaziya [24]

Answer:

a) L = 220\,m, b) U_{o} \approx 0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C}

Explanation:

a) The counterflow heat exchanger is presented in the attachment. Given that cold water is an uncompressible fluid, specific heat does not vary significantly with changes on temperature. Let assume that cold water has the following specific heat:

c_{p,c} = 4.186\,\frac{kJ}{kg\cdot ^{\textdegree}C}

The effectiveness of the counterflow heat exchanger as a function of the capacity ratio and NTU is:

\epsilon = \frac{1-e^{-NTU\cdot(1-c)}}{1-c\cdot e^{-NTU\cdot (1-c)}}

The capacity ratio is:

c = \frac{C_{min}}{C_{max}}

c = \frac{(1\,\frac{kg}{s} )\cdot(4.186\,\frac{kW}{kg^{\textdegree}C} )}{(1.8\,\frac{kg}{s} )\cdot(4.30\,\frac{kW}{kg^{\textdegree}C} )}

c = 0.541

Heat exchangers with NTU greater than 3 have enormous heat transfer surfaces and are not justified economically. Let consider that NTU = 2.5. The efectiveness of the heat exchanger is:

\epsilon = \frac{1-e^{-(2.5)\cdot(1-0.541)}}{1-(2.5)\cdot e^{-(2.5)\cdot (1-0.541)}}

\epsilon \approx 0.824

The real heat transfer rate is:

\dot Q = \epsilon \cdot \dot Q_{max}

\dot Q = \epsilon \cdot C_{min}\cdot (T_{h,in}-T_{c,in})

\dot Q = (0.824)\cdot (4.186\,\frac{kW}{^{\textdegree}C} )\cdot (160^{\textdegree}C-18^{\textdegree}C)

\dot Q = 489.795\,kW

The exit temperature of the hot fluid is:

\dot Q = \dot m_{h}\cdot c_{p,h}\cdot (T_{h,in}-T_{h,out})

T_{h,out} = T_{h,in} - \frac{\dot Q}{\dot m_{h}\cdot c_{p,h}}

T_{h,out} = 160^{\textdegree}C + \frac{489.795\,kW}{(7.74\,\frac{kW}{^{\textdegree}C} )}

T_{h,out} = 96.719^{\textdegree}C

The log mean temperature difference is determined herein:

\Delta T_{lm} = \frac{(T_{h,in}-T_{c, out})-(T_{h,out}-T_{c,in})}{\ln\frac{T_{h,in}-T_{c, out}}{T_{h,out}-T_{c,in}} }

\Delta T_{lm} = \frac{(160^{\textdegree}C-78^{\textdegree}C)-(96.719^{\textdegree}C-18^{\textdegree}C)}{\ln\frac{160^{\textdegree}C-78^{\textdegree}C}{96.719^{\textdegree}C-18^{\textdegree}C} }

\Delta T_{lm} \approx 80.348^{\textdegree}C

The heat transfer surface area is:

A_{i} = \frac{\dot Q}{U_{i}\cdot \Delta T_{lm}}

A_{i} = \frac{489.795\,kW}{(0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C} )\cdot(80.348^{\textdegree}C) }

A_{i} = 9.676\,m^{2}

Length of a single pass counter flow heat exchanger is:

L =\frac{A_{i}}{\pi\cdot D_{i}}

L = \frac{9.676\,m^{2}}{\pi\cdot (0.014\,m)}

L = 220\,m

b) Given that tube wall is very thin, inner and outer heat transfer areas are similar and, consequently, the cold side heat transfer coefficient is approximately equal to the hot side heat transfer coefficient.

U_{o} \approx 0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C}

5 0
3 years ago
Other questions:
  • Part A - Transmitted power A solid circular rod is used to transmit power from a motor to a machine. The diameter of the rod is
    8·1 answer
  • What are wheel cylinders used for?
    6·1 answer
  • The purpose of the international residential code is to
    9·1 answer
  • Match the terms with the correct definitions.
    14·1 answer
  • 10. Identify one material we Mine and what we make with that material
    6·1 answer
  • Discuss in detail the manners of interaction with opposite gender
    10·1 answer
  • What invention of the Middle Ages contributed to making books easily available?
    15·1 answer
  • 25 In differential aeration corrosion, rich oxygenated parts are
    14·1 answer
  • How does data mining help interactive marketing for a business?
    5·1 answer
  • For some alloy, the yield stress is 345-MPa (50,000-psi) and the elastic modulus (E) is 103-GPa (15x106 psi). What is the maximu
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!