It is a part of the sugary liquid in the plant that uses photosynthesis to produce.
We want to find the work done and power exerted, let’s start with work first.
We know that the equation for work is: W = F * D. We need to find the force which we can find by using: F = M * A.
Mass: 300kg
Acceleration (using equation from photo): 1.25 m/s^2
(The equation says x but can be used with y values)
If you are confused about how I found the acceleration; I plugged in 2.5 for the final y value, 0 for the initial y value, 0 for the initial velocity and 4 for t squared.
To solve, for acceleration it’s a matter of simple algebra. You can subtract the initial y position and the initial velocity from the final y position because they are 0. This leaves you with 2.5 m = 1/2a * t^2, from here I multiplied 2.5 by 2 to get rid of the 1/2. Now I have 5 = a * t^2. T^2 is just 2 squared, so four. Simply divide 5 by 4, and boom, you get 1.25 m/s^2.
Force = 300 kg * 1.25 m/s^2 = 375 Newtons
So, work = 500 N * 2.5 m = 1000 Joules
Power: W/t
So, Power = 1000 J / 2 seconds = 500 Watts
Hope this helps!
Hi there!
Since the crate is being slid at a constant speed, the forces sum to 0 N. In this instance, the following forces occur in the axis of interest:
Wsinθ = downward acceleration along incline due to gravity (N)
Fκ = kinetic friction force along incline (N)
A = applied force (N)
The acceleration due to gravity and friction force act in the same direction, so:
Wsinθ + Fκ = A
Solve for sinθ using right triangle trigonometry:
sinθ = O/H = 3/6 = 0.5
Rearrange the equation for the force of kinetic friction and solve:
Fκ = A - 0.5W
Fκ = 30.4 - 20 = 10.4 N
Now, recall that:
Work = Force × displacement (W = F × d)
Since the box's displacement is in the same axis as the force but OPPOSITE direction, we must use:
W = Fdcosθ
Angle between displacement and friction force is 180°.
cos(180) = -1
Work done by friction = -Fd = -10.4(6) = -62.4 J
Hello Lauren, The answer to this question is D:Plate boundaries.
Have a wonderful day:).
There are two types of equilibrium in mechanics.One is called static equilibrium and the other one is called dynamic equilibrium. In both the cases of mechanical equilibrium,the net force acting on the particle is zero.
A body is said to be in dynamic equilibrium if the net force acting on a moving body is zero.There will be no acceleration of the body.The body will continue its uniform motion without change in its direction and speed.
The body is said to be in static equilibrium if the net force acting on a body at rest is zero.As the net force is zero,the body will not undergo motion. It is due to the inertia of the body.
The two equilibrium are the direct consequences of Newton's first law which tells that a body will continue to be at state of rest or uniform motion along a straight line unless and until it is compelled by some external unbalanced force.Hence as long as net force on the body is zero,the body at rest will satisfy static equilibrium.
Out of the four options given in the question only third option is right which tells that a book that has no net force acting on it and sitting on a table is under static equilibrium. If the net force is not zero,the body can not be under static equilibrium.The book resting on a table imparts a force equal to its weight on the table and table in turn gives the normal reaction in vertically upward direction.The gravity pulls the book in vertically downward direction with a force equal to its weigh.Hence the net force is zero.So the table will be at rest.
If the net force is not zero,the body can not be under static equilibrium.
Hence option 3 is right.