Answer:
In physics, a force is any interaction that, when unopposed, will change the motion of an object. A force can cause an object with mass to change its velocity (which includes to begin moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a push or a pull.
Answer:
a) about 20.4 meters high
b) about 4.08 seconds
Explanation:
Part a)
To find the maximum height the ball reaches under the action of gravity (g = 9.8 m/s^2) use the equation that connects change in velocity over time with acceleration.


In our case, the initial velocity of the ball as it leaves the hands of the person is Vi = 20 m/s, while thw final velocity of the ball as it reaches its maximum height is zero (0) m/s. Therefore we can solve for the time it takes the ball to reach the top:

Now we use this time in the expression for the distance covered (final position Xf minus initial position Xi) under acceleration:

Part b) Now we use the expression for distance covered under acceleration to find the time it takes for the ball to leave the person's hand and come back to it (notice that Xf-Xi in this case will be zero - same final and initial position)

To solve for "t" in this quadratic equation, we can factor it out as shown:

Therefore there are two possible solutions when each of the two factors equals zero:
1) t= 0 (which is not representative of our case) , and
2) the expression in parenthesis is zero:

When glass is rubbed with a dry cloth, the friction creates charged static electricity; this in turn attracts small non charged particles of dust. The simplest way to put it, the dry cloth creates a static charge that attracts non charged dust particles.