This is a bit too broad. Maybe this is something to google up
Answer:
The time taken to reach the maximum height is 3.20 seconds
Explanation:
The given parameters are;
The initial height from which the volcano erupts the lava bomb = 64.4 m
The initial upward velocity of the lava bomb = 31.4 m/s
The acceleration due to gravity, g = 9.8 m/s²
The time it takes the lava bomb to reach its maximum height, t, is given by the following kinematic equation as follows;
v = u - g·t
Where;
v = The final velocity = 0 m/s at maximum height
u = The initial velocity = 31.4 m/s
g = The acceleration due to gravity = 9.8 m/s²
t = The time taken to reach the maximum height
Substituting the values gives;
0 = 31.4 - 9.8 × t
∴ 31.4 = 9.8 × t
t = 31.4/9.8 ≈ 3.204
The time taken to reach the maximum height rounded to three significant figures = t ≈ 3.20 seconds
I can answer it in the comments, but can i ask what i’m supposed to do exactly? i remember learning about this stuff but i need the instructions.
To solve this exercise it is necessary to use the concepts related to Difference in Phase.
The Difference in phase is given by

Where
Horizontal distance between two points
Wavelength
From our values we have,


The horizontal distance between this two points would be given for

Therefore using the equation we have




Therefore the correct answer is C.
Whenever lightning strikes it separates the air where it goes. This air then rushes back together making a loud noise when it connects, creating thunder.