By using the boundary layer equation, the average heat transfer coefficient for the plate is equal to 4.87 W/m²k.
<u>Given the following data:</u>
Surface temperature = 15°C
Bulk temperature = 75°C
Side length of plate = 150 mm to m = 0.15 meter.
<h3>How to calculate the average heat transfer coefficient.</h3>
Since we have a quiescent room air and a uniform pole surface temperature, the film temperature is given by:

Film temperature = 45°C to K = 273 + 45 = 318 K.
For the coefficient of thermal expansion, we have:

From table A-9, the properties of air at a pressure of 1 atm and temperature of 45°C are:
- Kinematic viscosity, v =
m²/s.
- Thermal conductivity, k = 0.02699 W/mk.
- Thermal diffusivity, α =
m²/s.
- Prandtl number, Pr = 0.7241.
Next, we would solve for the Rayleigh number to enable us determine the heat transfer coefficient by using the boundary layer equations:

Also take note, g(Pr) is given by this equation:
![g(P_r)=\frac{0.75P_r}{[0.609 \;+\;1.221\sqrt{P_r}\; +\;1.238P_r]^\frac{1}{4} } \\\\g(P_r)=\frac{0.75(0.7241)}{[0.609 \;+\;1.221\sqrt{0.7241}\; +\;1.238(0.7241)]^\frac{1}{4} }\\\\g(P_r)=\frac{0.543075}{[0.609 \;+\;1.221\sqrt{0.7241}\; +\;1.238(0.7241)]^\frac{1}{4} }\\\\g(P_r)=\frac{0.543075}{[2.5444]^\frac{1}{4} }\\\\g(P_r)=\frac{0.543075}{1.2630 }](https://tex.z-dn.net/?f=g%28P_r%29%3D%5Cfrac%7B0.75P_r%7D%7B%5B0.609%20%5C%3B%2B%5C%3B1.221%5Csqrt%7BP_r%7D%5C%3B%20%2B%5C%3B1.238P_r%5D%5E%5Cfrac%7B1%7D%7B4%7D%20%7D%20%5C%5C%5C%5Cg%28P_r%29%3D%5Cfrac%7B0.75%280.7241%29%7D%7B%5B0.609%20%5C%3B%2B%5C%3B1.221%5Csqrt%7B0.7241%7D%5C%3B%20%2B%5C%3B1.238%280.7241%29%5D%5E%5Cfrac%7B1%7D%7B4%7D%20%7D%5C%5C%5C%5Cg%28P_r%29%3D%5Cfrac%7B0.543075%7D%7B%5B0.609%20%5C%3B%2B%5C%3B1.221%5Csqrt%7B0.7241%7D%5C%3B%20%2B%5C%3B1.238%280.7241%29%5D%5E%5Cfrac%7B1%7D%7B4%7D%20%7D%5C%5C%5C%5Cg%28P_r%29%3D%5Cfrac%7B0.543075%7D%7B%5B2.5444%5D%5E%5Cfrac%7B1%7D%7B4%7D%20%7D%5C%5C%5C%5Cg%28P_r%29%3D%5Cfrac%7B0.543075%7D%7B1.2630%20%7D)
g(Pr) = 0.430
For GrL, we have:

Since the Rayleigh number is less than 10⁹, the flow is laminar and the condition is given by:
![N_{uL}=\frac{h_{L}L}{k} = \frac{4}{3} (\frac{G_{rL}}{4} )^\frac{1}{4} g(P_r)\\\\h_{L}=\frac{0.02699}{0.15} \times [\frac{4}{3} \times (\frac{1.99 \times 10^7}{4} )^\frac{1}{4} ]\times 0.430\\\\h_{L}= 0.1799 \times 62.9705 \times 0.430\\\\h_{L}=4.87\;W/m^2k](https://tex.z-dn.net/?f=N_%7BuL%7D%3D%5Cfrac%7Bh_%7BL%7DL%7D%7Bk%7D%20%3D%20%5Cfrac%7B4%7D%7B3%7D%20%28%5Cfrac%7BG_%7BrL%7D%7D%7B4%7D%20%29%5E%5Cfrac%7B1%7D%7B4%7D%20g%28P_r%29%5C%5C%5C%5Ch_%7BL%7D%3D%5Cfrac%7B0.02699%7D%7B0.15%7D%20%5Ctimes%20%20%5B%5Cfrac%7B4%7D%7B3%7D%20%5Ctimes%20%20%28%5Cfrac%7B1.99%20%5Ctimes%2010%5E7%7D%7B4%7D%20%29%5E%5Cfrac%7B1%7D%7B4%7D%20%5D%5Ctimes%200.430%5C%5C%5C%5Ch_%7BL%7D%3D%200.1799%20%5Ctimes%2062.9705%20%5Ctimes%200.430%5C%5C%5C%5Ch_%7BL%7D%3D4.87%5C%3BW%2Fm%5E2k)
Based on empirical correlation method, the average heat transfer coefficient for the plate is given by this equation:
![N_{uL}=\frac{h_{L}L}{k} =0.68 + \frac{0.670 R_{aL}^\frac{1}{4}}{[1+(\frac{0.492}{P_r})^\frac{9}{16}]^\frac{4}{19} } \\\\h_{L}=\frac{0.02699}{0.15} \times ( 0.68 + \frac{0.670 (1.48 \times 10^7)^\frac{1}{4}}{[1+(\frac{0.492}{0.7241})^\frac{9}{16}]^\frac{4}{19} })\\\\h_{L}=4.87\;W/m^2k](https://tex.z-dn.net/?f=N_%7BuL%7D%3D%5Cfrac%7Bh_%7BL%7DL%7D%7Bk%7D%20%3D0.68%20%2B%20%20%5Cfrac%7B0.670%20R_%7BaL%7D%5E%5Cfrac%7B1%7D%7B4%7D%7D%7B%5B1%2B%28%5Cfrac%7B0.492%7D%7BP_r%7D%29%5E%5Cfrac%7B9%7D%7B16%7D%5D%5E%5Cfrac%7B4%7D%7B19%7D%20%20%20%7D%20%5C%5C%5C%5Ch_%7BL%7D%3D%5Cfrac%7B0.02699%7D%7B0.15%7D%20%5Ctimes%20%28%200.68%20%2B%20%20%5Cfrac%7B0.670%20%281.48%20%5Ctimes%2010%5E7%29%5E%5Cfrac%7B1%7D%7B4%7D%7D%7B%5B1%2B%28%5Cfrac%7B0.492%7D%7B0.7241%7D%29%5E%5Cfrac%7B9%7D%7B16%7D%5D%5E%5Cfrac%7B4%7D%7B19%7D%20%20%20%7D%29%5C%5C%5C%5Ch_%7BL%7D%3D4.87%5C%3BW%2Fm%5E2k)
Read more on heat transfer here: brainly.com/question/10119413