Answer:
300 N/m
Explanation:
given,
Load attached to the spring, W = 54 N
length of stretch of the spring, x = 0.15 m
spring constant= ?
Force applied on the spring is calculated by the equation
F = k x
where k is the spring constant
x is the displacement of the spring due to applied load
now,
54 = k × 0.15


hence, the spring constant is equal to 300 N/m
Answer:
Thank you so much!!!!
Explanation:
I really need this points
Answer:
c > √(2ab)
Explanation:
In this exercise we are asked to find the condition for c in such a way that the results have been real
The given equation is
½ a t² - c t + b = 0
we can see that this is a quadratic equation whose solution is
t = [c ±√(c² - 4 (½ a) b)] / 2
for the results to be real, the square root must be real, so the radicand must be greater than zero
c² -2a b > 0
c > √(2ab)
A projectile motion is characterized by motion moving in a direction of an arc. It is acted upon by two component vectors: the horizontal and vertical. These two vectors are independent of each other when it comes to time of flight. The horizontal direction travels at constant speed, while the vertical direction travels at constant acceleration due to gravity, The time for an object to reach the ground would be equal, whether dropped from the sampe point or thrown in a projectile motion. Of course, this is assuming ideality wherein there is no air resistance.
So, the hang up time, or the time the object stayed on air is calculated using this equation:
a = Δv/t
Δv is the change in velocity which is the initial velocity when it was dropped to when it reaches zero velocity when it hits the ground.
9.81 m/s² = |(0 - 7.3)|/t
t = 0.744 seconds
Answer:
0.1 m
Explanation:
F = Force exerted on spring = 3 N
k = Spring constant = 60 N/m
x = Displacement of the block
As the energy of the system is conserved we have




The position of the block is 0.1 from the initial position.