1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goldenfox [79]
2 years ago
14

A sound wave, generated at a frequency of 440 hertz has a wavelength of 2.3 meters as it travels through a solid material. The a

pproximate speed of the wave is ____ m/sec.
Physics
1 answer:
Jlenok [28]2 years ago
8 0

The approximate speed of the sound wave traveling through the solid material is 1012m/s.

<h3>Wavelength, Frequency and Speed</h3>

Wavelength is simply the distance over which the shapes of waves are repeated. It is the spatial period of a periodic wave.

From the wavelength, frequency and speed relation,

λ = v ÷ f

Where λ is wavelength, v is velocity/speed and f is frequency.

Given the data in the question;

  • Frequency of sound wave f = 440Hz = 440s⁻¹
  • Wavelength of the wave λ = 2.3m
  • Speed of the wave v = ?

To determine the approximate speed of the wave, we substitute our given values into the expression above.

λ = v ÷ f

2.3m = v ÷ 440s⁻¹

v = 2.3m × 440s⁻¹

v = 1012ms⁻¹

v = 1012m/s

Therefore, the approximate speed of the sound wave traveling through the solid material is 1012m/s.

Learn more about Speed, Frequency and Wavelength here: brainly.com/question/27120701

You might be interested in
Considering the various theories, the energy used in forming organic molecules in the primitive atmosphere could have come from
OLEGan [10]

Answer:

<h2>e. sound. </h2>

Explanation:

  • Such type of atmosphere in which oxygen was not present or was present in little amount is known as the primitive atmosphere and such type of atmosphere was present in the initial stage of the earth formation.
  • During this period, water vapor, nitrogen, hydrogen and carbon dioxide gases were present.
  • These gases interact with the help of energy that comes from many sources such as lightning, ultraviolet radiation, electric spark and some other.
  • When these inorganic molecules react in the then the formation of organic compounds takes place that becomes the basis of the organization of the life on the earth and called an organic evolution of life.  

8 0
3 years ago
PLEASE HELP
hichkok12 [17]

The correct answer is 195.6 N

Explanation:

Different from the mass (total of matter) the weight is affected by gravity. Due to this, the weight changes according to the location of a body in the universe as gravity is not the same in all planets or celestial bodies. Moreover, this factor is measured in Newtons and it can be calculated using this simple formula W (Weight) = m (mass) x g (force of gravity). Now, leps calculate the weigh of someone whose mass is 120 kg and it is located on the moon:

F = 120 kg x 1.63 m/s2

F= 195.6 N

7 0
3 years ago
Find the object's speeds v1, v2, and v3 at times t1=2.0s, t2=4.0s, and t3=13s.
Burka [1]
Since this is a distance/time graph, the speed at any time is the slope
of the part of the graph that's directly over that time on the x-axis.

At time  t1 = 2.0 s
That's in the middle of the first segment of the graph,
that extends from zero to 3 seconds.
Its slope is  7/3 .              v1 = 7/3 m/s .

At time  t2 = 4.0 s
That's in the middle of the horizontal part of the graph
that runs from 3 to 6 seconds.
Its slope is zero.
                                     v2 = zero .

At time  t3 = 13 s.
That's in the middle of the part of the graph that's sloping down,
between 11 and 16 seconds.
Its slope is  -3/5 .            v3 = -0.6 m/s .              
7 0
3 years ago
Read 2 more answers
Calculate, for the judge, how fast you were going in miles per hour when you ran the red light because it appeared Doppler-shift
sammy [17]

Answer:

The doppler effect equation is:

f' = \frac{v +v0}{v - vs}*f

In the equation we have frequencies, but then we have the wavelengths of the lights, remember the relation:

v = f*λ

then:

f = v/λ

and v is the speed of light, then:

f = c/λ

where:

f' is the observed frequency, in this case, is equal to f = (3*10^17nm/s)/550 nm

f is the real frequency, in this case, is (3*10^17nm/s)/650 nm

vs is the speed of the source, in this case, the source is not moving, then vs = 0 m/s.

v is the speed of the wave, in this case, is equal to the speed of light, v = 3*10^8 m/s

v0 is your speed, this is what we want to find.

Replacing those quantities in the equation, we get:

(3*10^17nm/s)/550 = (3*10^8 m/s + v0)/(3*10^8 m/s)*(3*10^17nm/s)/650 nm

(650nm)/(550nm) = (3*10^8 m/s + v0)/(3*10^8 m/s)

1.182*(3*10^8 m/s) = (3*10^8 m/s + v0)

1.182*(3*10^8 m/s) -  (3*10^8 m/s) = v0 = 54,600,000 m/s

So your speed was 54,600,000 m/s, which is a lot.

6 0
3 years ago
A 126- kg astronaut (including space suit) acquires a speed of 2.70 m/s by pushing off with her legs from a 1800-kg space capsul
jeka94

The change in the speed of the space capsule will be -0.189 m/s.

The average force exerted by each on the other will be 567 N.

The kinetic energy of each after the push for the astronaut and the capsule are 459.27 J and 32.14 J.

<h3>Given:</h3>

Mass of the astronaut, m_a = 126 kg

Speed he acquires, v_{a}  = 2.70 m/s

Mass of the space capsule, m_{c} = 1800kg

The initial momentum of the astronaut-capsule system is zero due to rest.

P_f = m_av_a + m_cv_c

P_I = 0

m_av_a + m_cv_c = 0

v_c =\frac{- m_a v_a}{m_c}}\\\\

   = \frac{126* 2.70}{1800}

   = - 0.189 m/s

Therefore,

According, to the impulse-momentum theorem;

FΔt = ΔP

ΔP = m Δv

ΔP = 126×2.70

    = 340.2 kgm/sec

t is time interval = 0.600s

F = ΔP/Δt

F = 340.2/0.600

  = 567 N

Therefore, the average force exerted by each on the other will be 567 N.

The Kinetic Energy of the astronaut;

K.E = \frac{1}{2} m v^2

     = \frac{1}{2} × 126 × (2.70) ^2

     = 459.27 J

The Kinetic Energy of the capsule;

K.E = \frac{1}{2} m v^2

     = \frac{1}{2}×1800×(0.189) ^2

     = 32.14 J

Therefore, the kinetic energy of each after the push for the astronaut and the capsule are 459.27 J and 32.14 J.

Learn more about kinetic energy here:

brainly.com/question/26520543

#SPJ1

3 0
2 years ago
Other questions:
  • 2. Can you rearrange the equation F = kx to get k on one side of the equation
    15·1 answer
  • "How did your current and voltage measurements differ between the series and parallel circuits you created
    14·1 answer
  • Which hemisphere is experiencing summer in july?
    5·1 answer
  • Which of the following allows natural selection and evolution to occur?
    9·2 answers
  • A wave has a wavelength of 3.3m and a speed of 5.6m/s. What is the frequency of this wave?
    6·1 answer
  • If you are looking for an insulator you are looking for a material that will
    8·1 answer
  • What property of matter makes metal pots a good choice for heating food? A.Electrical conductivity B.Magnetic properties C.Solub
    13·1 answer
  • The ____ is a particle with one unit of positive change
    7·2 answers
  • What are the ways of heat transfer?
    10·2 answers
  • Which would help you perform a basketball skill well with<br> speed?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!