Answer:
μk = (Vf - Vc)/(T×g)
Explanation:
Given
Vi = initial velocity of the car
Vf = final velocity of the car
T = Time of application of brakes
g = acceleration due to gravity (known constant)
Let the mass of the car be Mc
Assuming only kinetic frictional force acts on the car as the driver applies the brakes,
The n from Newtown's second law of motion.
Fk = Mc×a
Fk = μk×Mc×g
a = (Vf - Vc)/T
Equating both preceding equation.
μk×Mc×g = Mc × (Vf - Vc)/T
Mc cancels out.
μk = (Vf - Vc)/(T×g)
Explanation:
First of all we calculate the volume which is 20m×10m×8m= 1600m^3 and then multiply the density by the volume to get the mass which will equal to 99200kg therefore the weight will be
<em><u>Weight</u></em>
mass × acceleration due to gravity
=99200kg × 10m^s^2
=992000N
The answer is D, human.
Happy Friday!!!
Answer:
3.76 m/s
Explanation:
Instantaneous velocity: This can be defined as the velocity of an object in a non uniform motion. The S.I unit is m/s.
v' = dx(t)/dt..................... Equation 1
Where v' = instantaneous velocity, x = distance, t = time.
Given the expression,
x(t) = 28.0 m + (12.4 m/s)t - (0.0450 m/s³)t³
x(t) = 28 + 12.4t - 0.0450t³
Differentiating x(t) with respect to t.
dx(t)/dt = 12.4 - 0.135t²
dx(t)/dt = 12.4 - 0.135t²
When t = 8.00 s.
dx(t)/dt = 12.4 - 0.135(8)²
dx(t)/dt = 12.4 - 8.64
dx(t)/dt = 3.76 m/s.
Therefore,
v' = 3.76 m/s.
Hence, the instantaneous velocity = 3.76 m/s