The magnetic force acting on the proton is

where
q is the proton charge
v is its speed
B is the intensity of the magnetic field

is the angle between the direction of v and B; since the proton is moving perpendicular to the magnetic field,

and

, so the force becomes

this force provides the centripetal force that keeps the proton in circular motion:

where the term on the left is the centripetal force, with
m being the mass of the proton
r the radius of its orbit
Re-arranging the previous equation, we can find the radius of the proton's orbit:

And now we can calculate the centripetal acceleration of the proton, which is given by
It depends on what illness and what country you are in but Mayo Clinic and Johns Hopkins are good sources.
Answer:B When one bulb burns out, all the others lights stay lit.
Explanation:
You are given a fixed rate of 15.9 cm³/s. You are also given with the amount of volume in 237 cm³. Through the approach of dimensional analysis, you can manipulate through operations such that the end result of the units must be in seconds. The solution is as follows:
237 cm³ * (1 s/15.9 cm³) = 14.9 seconds
Answer:
b) The star is moving away from us.
Explanation:
If an object moves toward us, the light waves it emits are compressed - the wavelength of the light will be shorter, making the light bluer. On the other hand, if an object moves away from us, the light waves are stretched, making it redder. If from laboratory measurements we know that a specific hydrogen spectral line appears at the wavelength of 121.6 nanometers (nm) and the spectrum of a particular star shows the same hydrogen line appearing at the wavelength of 121.8 nm, we can conclude that the star is moving away from npos, since the wavelength related to that star is more expanded.