Answer: The orange color remains unchanged. (B)
Explanation:
Answer : The correct option is, (D)
Explanation :
Option A reaction :
It is a combustion reaction. A reaction in which a hydrocarbon react with the oxygen to give product as carbon dioxide and water.
Option B reaction :
It is a combination reaction. A reaction in which the two or more reactants react to give a product.
Option C reaction :
It is a decomposition reaction. A reaction in which a reactant decomposes to form two or more products.
Option D reaction :
It is a single displacement reaction. It is a reaction in which the more reactive element displace the less reactive element. In this reaction, most reactive element chlorine displaces the less reactive element bromine.
Hence, the correct option is, (D)
This uses the concept of freezing point depression. When faced with this issue, we use the following equation:
ΔT = i·Kf·m
which translates in english to:
Change in freezing point = vant hoff factor * molal freezing point depression constant * molality of solution
Because the freezing point depression is a colligative property, it does not depend on the identity of the molecules, just the number of them.
Now, we know that molality will be constant, and Kf will be constant, so our only unknown is "i", or the van't hoff factor.
The van't hoff factor is the number of atoms that dissociate from each individual molecule. The higher the van't hoff factor, the more depressed the freezing point will be.
NaCl will dissociate into Na+ and Cl-, so it has i = 2
CaCl2 will dissociate into Ca2+ and 2 Cl-, so it has i = 3
AlBr3 will dissociate into Al3+ and 3 Br-, so it has i = 4
Therefore, AlBr3 will lower the freezing point of water the most.
Answer is none of the above