Answer:
The reaction quotient (Q) before the reaction is 0.32
Explanation:
Being the reaction:
aA + bB ⇔ cC + dD
![Q=\frac{[C]^{c} *[D]^{d} }{[A]^{a}*[B]^{b} }](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%2A%5BB%5D%5E%7Bb%7D%20%20%7D)
where Q is the so-called reaction quotient and the concentrations expressed in it are not those of the equilibrium but those of the different reagents and products at a certain instant of the reaction.
The concentration will be calculated by:

You know the reaction:
PCl₅ (g) ⇌ PCl₃(g) + Cl₂(g).
So:
![Q=\frac{[PCl_{3} ] *[Cl_{2} ] }{[PCl_{5} ]}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BPCl_%7B3%7D%20%5D%20%2A%5BCl_%7B2%7D%20%5D%20%7D%7B%5BPCl_%7B5%7D%20%5D%7D)
The concentrations are:
- [PCl₃]=

- [Cl₂]=

- [PCl₅]=

Replacing:

Solving:
Q= 0.32
<u><em>The reaction quotient (Q) before the reaction is 0.32</em></u>
A density of a substance is constant. It is an extensive property, meaning it does not depend on the amount of substance because it is a ratio of mass to volume. No matter how much of each there is, they would always have a fixed ratio called density. For lead, the density is
Density = mass/volume
Density = 23.94 g/ 2.10 cm³
Density = 11.4 g/cm³
Answer:
Explanation:
Use the trigonometric ratio definition of the tangent function and the quotient rule.
Quotient rule: the derivative of a quotient is:
- [the denominator × the derivative of the numerator less the numerator × the derivative of the denominator] / [denominator]²
- (f/g)' = [ g×f' - f×g'] / g²
So,
- tan(x)' = [ sin(x) / cos(x)]'
- [ sin(x) / cos(x)]' = [ cos(x) sin(x)' - sin(x) cos(x)' ] / [cos(x)]²
= [ cos(x)cos(x) + sin(x) sin(x) ] / [ cos(x)]²
= [ cos²(x) + sin²(x) ] / cos²(x)
= 1 / cos² (x)
= sec² (x)
The result is that the derivative of tan(x) is sec² (x)
Answer:
21
Explanation:
bcecause thats the only one