consider east-west direction along X-axis and north-south direction along Y-axis
= velocity of migrating robin relative to air = 12 j m/s
(where "j" is unit vector in Y-direction)
= velocity of air relative to ground = 6.3 i m/s
(where "i" is unit vector in X-direction)
= velocity of migrating robin relative to ground = ?
using the equation
=
+ 
= 12 j + 6.3 i
= 6.3 i + 12 j
magnitude : sqrt((6.3)² + (12)²) = 13.6 m/s
direction : tan⁻¹(12/6.3) = 62.3 deg north of east
Answer:
The moment of inertia about an axis through the center and perpendicular to the plane of the square is

Explanation:
From the question we are told that
The length of one side of the square is 
The total mass of the square is 
Generally the mass of one size of the square is mathematically evaluated as

Generally the moment of inertia of one side of the square is mathematically represented as

Generally given that
it means that this moment inertia evaluated above apply to every side of the square
Now substituting for 
So

Now according to parallel-axis theorem the moment of inertia of one side of the square about an axis through the center and perpendicular to the plane of the square is mathematically represented as
![I_a = I_g + m [\frac{q}{2} ]^2](https://tex.z-dn.net/?f=I_a%20%3D%20%20I_g%20%2B%20m%20%5B%5Cfrac%7Bq%7D%7B2%7D%20%5D%5E2)
=> ![I_a = I_g + {\frac{M}{4} }* [\frac{q}{2} ]^2](https://tex.z-dn.net/?f=I_a%20%3D%20%20I_g%20%2B%20%7B%5Cfrac%7BM%7D%7B4%7D%20%7D%2A%20%5B%5Cfrac%7Bq%7D%7B2%7D%20%5D%5E2)
substituting for 
=> ![I_a = \frac{1}{12} * \frac{M}{4} * a^2 + {\frac{M}{4} }* [\frac{q}{2} ]^2](https://tex.z-dn.net/?f=I_a%20%3D%20%20%5Cfrac%7B1%7D%7B12%7D%20%20%2A%20%20%5Cfrac%7BM%7D%7B4%7D%20%2A%20a%5E2%20%2B%20%7B%5Cfrac%7BM%7D%7B4%7D%20%7D%2A%20%5B%5Cfrac%7Bq%7D%7B2%7D%20%5D%5E2)
=> 
=> 
Generally the moment of inertia of the square about an axis through the center and perpendicular to the plane of the square is mathematically represented as

=> 
=> 
Is there multiple answer choices?
Answer:
A force of μk⋅60N is needed to keep a 60-newton rubber block moving across level, dry asphalt in a straight line at a constant speed.
Explanation: