To solve this problem it is necessary to apply the principles of conservation of Energy in order to obtain the final work done.
The electric field in terms of the Force can be expressed as

Where,
F = Force
E= Electric Field
q = Charge
Puesto que el trabajo realizado es equivalente al cambio en la energía cinetica entonces tenemos que
KE = W
KE = F*d
In the First Case,

In Second Case,



The total energy change would be subject to,


Therefore the Kinetic Energy change of the charged object is 27.976J
Given that,
Atmospheric Pressure = 14.7 psi
Cooking Pressure = 14.7 +11.1 = 25.8 psi
Take, Atmospheric Temperature = 25 °C
Cooking Temperature = ??
Since, we know that Gas equation is given by:
PV = nRT
or
P ∝ T
P1 / T1 = P2 / T2
14.7/ 25 = 25.8/ T2
T2 = 25*25.8/14.7
T2 = 43.87 °C
The cooking pressure will be 43.87 °C.
The target heart rate for moderate-intensity activity is 80%
Answer:
The amount of work done in order to lift the box is 
Explanation:
Given the weight of each box is 
And the man lifts boxes at a height of 
We need to find the amount of work done.
The amount of work done is the product of applied force
that causes the displacement
.
In our problem force is
and displacement is
.
Now, work done

So, the amount of work done in order to lift the box is 