Answer:
0.0685 mL
Explanation:
To find the volume of the sample, divide the mass by the density.
(1.00 g)/(14.6 g/mL) = 0.0685 mL
To calculate for the final temperature, we need to remember that the heat rejected should be equal to the absorbed by the other system. We calculate as follows:
Q1 = Q2
(mCΔT)1 = (mCΔT)2
We can cancel m assuming the two systems are equal in mass. Also, we cancel C since they are the same system. This leaves us,
(ΔT)1 = (ΔT)2
(T - 80) = (0 - T)
T = 40°C
Answer:
THE LENGTH OF THE AIR COLUMN IS 9.5 CM
Explanation:
Taking the atmospheric pressure to be 760 mmHg;
When the capillary tube is held horizontally, the pressure of the tube is 760 mmHg
when the capillary tube is held vertically, the pressure increases by 4 cm = 40 mm
The new pressure of the tube is hence, 760 + 40 mmHg = 800 mmHg
Using the pressure forlmula;
P1 V1 = P2 V2
P1 A1 L1 = P2 A2 L2
where A1 and A2 is the area of the capillary tube and it is equal, it cancels out.
P1 l1 = P2 l2
l2 = P1 l1 / P2
l2 = 760 * 10 / 800
l2 = 9.5 cm
The length of the air in the tube is 9.5 cm.
Answer:
<u><em>Arrhenius Acid:</em></u>
According to Arrhenius concept, Acids are proton donors.
Since H₂SO₄ have a proton (H⁺ ion) and it can donate it to be made a sulphate ion, So it is an Arrhenius acid.
See the following reaction =>
<u><em>H₂SO₄ + H₂O => HSO₄ + H₃O⁺</em></u>
<u><em>Arrhenius Base:</em></u>
An Arrhenius base is a a proton acceptor.
KOH accepts the proton to to made to KOH₂ and a proton acceptor.
See the following reaction =>
<u><em>KOH + H₂o => KOH₂ + OH⁻</em></u>
<u><em></em></u>
1. Both part of the ecosystem
2. There are biotic objects on abiotic objects ( caterpillars on trees ) and abiotic objects on biotic things ( pollen on bees )
3. Both are made of atoms