1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Readme [11.4K]
2 years ago
15

2. What would be the acceleration of the clown at 5 s? (A) 1.6 m/s2 (B) 8.0 m/s2 (C) 2.0 m/s2 (D) 3.4 m/s2 3. After 12 seconds,

how far is the clown from her original starting point? (A) 0 m (B) 10 m (C) 47 m (D) 74 m
Physics
1 answer:
Neko [114]2 years ago
7 0
Is there an image that goes with this question?
You might be interested in
two charges having the same charge magnitude experiencing an attracting force of 3.60N when the charges are 30cm apart.what is t
Tomtit [17]

The charges have opposite sign and magnitude 6 \mu C

Explanation:

The magnitude of the electrostatic force between two electric charges is given by Coulomb's law:

F=k\frac{q_1 q_2}{r^2}

where:

k=8.99\cdot 10^9 Nm^{-2}C^{-2} is the Coulomb's constant

q_1, q_2 are the two charges

r is the separation between the two charges

In this problem, we have:

F = 3.60 N is the force between the two charges

r = 30 cm = 0.30 m is their separation

The two charges have same magnitude, so

q_1 = q_2 = q

So we can rewrite the equation as

F=\frac{kq^2}{r^2}

And solving for q:

q=\sqrt{\frac{Fr^2}{k}}=\sqrt{\frac{(3.60)(0.30)^2}{8.99\cdot 10^9}}=6\cdot 10^{-6} C = 6\mu C

Moreover, the force between the charges is attractive: we know that charges of same sign repel each other while charges of opposite sign attract each other, therefore the charges in this problem have opposite sign, so

q_1 = 6 \mu C\\q_2 = -6 \mu C

Learn more about electric force:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

3 0
3 years ago
A uniform magnetic field passes through a horizontal circular wire loop at an angle 19.5 ∘ from the vertical. The magnitude of t
nlexa [21]

To solve this problem, we will apply the concepts related to Faraday's law that describes the behavior of the emf induced in the loop. Remember that this can be expressed as the product between the number of loops and the variation of the magnetic flux per unit of time. At the same time the magnetic flux through a loop of cross sectional area is,

\Phi = BA Cos \theta

Here,

\theta = Angle between areal vector and magnetic field direction.

According to Faraday's law, induced emf in the loop is,

\epsilon= -N \frac{d\Phi }{dt}

\epsilon = -N \frac{(BAcos\theta)}{dt}

\epsilon = -NAcos\theta \frac{dB}{dt}

\epsilon = -N\pi r^2 cos\theta \frac{d}{dt} ( ( 3.75 T ) + ( 3.05T/s ) t + ( -6.95 T/s^2 ) t^2)

\epsilon = -N\pi r^2 cos\theta( (3.05T/s)-(13.9T/s)t )

At time t = 5.71s,  Induced emf is,

\epsilon = -(1) \pi (0.220m)^2 cos(19.5\°)(  (3.05T/s)-(13.9T/s)(5.71s))

\epsilon = 10.9V

Therefore the magnitude of the induced emf is 10.9V

4 0
3 years ago
Read 2 more answers
A 2-kg box sits on a horizontal table. the force of friction between the box and the table is 10 n. the box is pushed to the rig
dangina [55]
By Newton's 2nd law of motion, F = ma, where F is force, m is mass, and a is acceleration.

Rearranging this equation to find acceleration would give us:
a = F/m

The horizontal force to the right is 10N, because the box is pushed to the right with a force of 20N, and the friction force of 10N opposes that, so:
20N - 10N = 10N

The mass is 2kg.

Putting these values into the equation gives us:
a = F/m
= 10/2
= 5ms^-2

The acceleration of the box is 5ms^-2
6 0
3 years ago
Kiera, a 330 N girl, steps in water that someone spilt on the floor. The coefficient of kinetic friction between Kiera and the f
shutvik [7]

Answer:

<em>The force of kinetic friction between Kiera and the floor is 9.24 N</em>

Explanation:

<u>Friction Force</u>

When an object is moving and encounters friction in rough surfaces, it loses acceleration and/or velocity because the friction force opposes motion.

The friction force when an object is moving on a horizontal surface is calculated by:

Fr=\mu N

Where μ is the coefficient of static or kinetics friction and N is the normal force.

If no forces other then the weight and the normal are acting upon the y-direction, then the weight and the normal are equal in magnitude:

N = W

Thus, the friction force is:

Fr=\mu W

Kiera, the W=330 N girl steps in water that has a coefficient of friction of μ=0.028 with the floor.

The kinetic friction force is:

Fr = 0.028*330

Fr = 9.24 N

The force of kinetic friction between Kiera and the floor is 9.24 N

3 0
3 years ago
How far would a jet going 155 m/s travel in 9 s?
docker41 [41]

Answer:

1,395 m

Explanation:

155×9

multiply m/s by 9s

5 0
3 years ago
Other questions:
  • Sand falls from an overhead bin and accumulates in a conical pile with a radius that is always threethree times its height. Supp
    12·1 answer
  • What other forces affect the soccer ball after the student's foot stops touching it?
    5·2 answers
  • A hydraulic machine can be used to lift extremely heavy objects. Why is the fluid in the hydraulic machine a liquid rather than
    9·2 answers
  • According to the universal law of gravitation _____.
    13·2 answers
  • A ball is dropped off the side of a bridge.<br> After 1.55 s, how far has it fallen?
    11·1 answer
  • Why is there no electric field at the center of a charged spherical conductor?
    7·1 answer
  • A cylindrical concrete (r = 1495 kg/m3; Cp = 880 J/kg*K; k = 1.5 W/m*K) beam is exposed to a hot gas flow at 500 °C. The convect
    12·1 answer
  • How do local action make the cell defective​
    13·1 answer
  • Substances which naturally attract each other called what
    15·1 answer
  • Under normal circumstances: _________
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!