To look for displacement, just draw a vector from your beginning stage to your last position and settle for the length of this line. So we begin by drawing a line to the north which is 30 ft, since it is north, the line is going up, then it move 5 ft to the south, so put a line going down, so we are in 25 ft, North so that would be the answer.
Answer:
Option B. O because the net force was 5 N in Alfredo's direction
Explanation:
To know the the correct answer to the question given above, we shall determine the net force acting on the bat. This can be obtained as follow:
Force of pull by Mason (Fₘ) = 15 N
Force of pull by Alfredo (Fₐ) = 20 N
Net force (Fₙ) =?
Fₙ = 20 – 15
Fₙ = 5 N in Alfredo's direction
From the calculation made above, we can see that the net force is 5N in Alfredo's direction. This is the reason why Alfredo end up having the bat.
Answer:

Explanation:
Parameters given:
Charge of object, q = 5 mC = 
Acceleration of object, a = 
Mass of object, m = 2.0 g
The Electric field exerts a particular force on the object, causing it to accelerate (Electrostatic force).
We know that Electrostatic force, F, is given in terms of Electric field, E, as:
F = qE
This means that the object exerts a force of -qE on the Electric force (Action with equal and opposite reaction).
The object also has a force, F, due to its acceleration a. This force is the product of its mass and acceleration. Mathematically:
F = ma
Equating the two forces of the object, we get:
-qE = ma
=> 
Solving for E, we have:

The magnitude will be:

The electric field has a magnitude of 0.002 N/C.
You find yourself in a place that is unimaginably <u>hot and dense</u>. A r<u>apidly changing</u><u> gravitational field</u><u> </u>randomly warps space and time. Gripped by these huge fluctuations, you notice that there is but a single, unified force governing the universe, you are in the early universe before the Planck time.
<h3>What is Planck time?</h3>
The Planck time is approximately<u> 10^-44 seconds</u>. The smallest time interval, or "zeptosecond," that has so far been measured is <u>10^-21 seconds</u>. A photon traveling at the speed of light would need one Planck time <u>to traverse a distance of one </u><u>Planck length</u>.
<h3>What is Planck length?</h3>
Planck units are a set of measuring units used only in particle physics and physical cosmology. They are defined in terms of <u>four universal </u><u>physical constants</u> in such a way that when expressed in terms of these units, these physical constants have the numerical value 1. These units are a system of natural units because its definition is <u>based on characteristics of nature</u>, more especially the characteristics of free space, rather than a selection of prototype object, as was the case with Max Planck's original 1899 proposal. They are pertinent to the study of unifying theories like quantum gravity.
To learn more about Plank time:
brainly.com/question/23791066
#SPJ4