Block that fool, move on, take a nice warm bath, but on some music and vibe dawg, it might be hard to get over something like this, but just know that person was in the wrong the whole time.
The tension in the rope B is determined as 10.9 N.
<h3>Vertical angle of cable B</h3>
tanθ = (6 - 4)/(5 - 0)
tan θ = (2)/(5)
tan θ = 0.4
θ = arc tan(0.4) = 21.8 ⁰
<h3>Angle between B and C</h3>
θ = 21.8 ⁰ + 21.8 ⁰ = 43.6⁰
Apply cosine rule to determine the tension in rope B;
A² = B² + C² - 2BC(cos A)
B = C
A² = B² + B² - (2B²)(cos A)
A² = 2B² - 2B²(cos 43.6)
A² = 0.55B²
B² = A²/0.55
B² = 65.3/0.55
B² = 118.73
B = √(118.73)
B = 10.9 N
Thus, the tension in the rope B is determined as 10.9 N.
Learn more about tension here: brainly.com/question/24994188
#SPJ1
Answer:
human potential energy
Explanation:
It is given that, before a ball rolls down a hill, it has gravitational potential energy.
Before a rubber ball bounces away from a surface, it has elastic potential energy.
Human potential energy allows us to throw a ball. While throwing a ball, we have to apply some force by our muscles in order to done some work.Also, we know that the capacity to do work is called energy.
Hence, the correct option is (D) " human potential energy ".
Calculating speed as function of distance y is fairly easy. Once water leaves pipe it is under free fall which means that it is accelerating with gravitational acceleration "a".
V=Vo + Vff where Vff is speed gained due to free fall.


Calculating radius of stream is a little bit more complicated. Because water is accelerating as it falls it has to lower its radius. The reason for this is that water flow must be the same as one at the exit of pipe. Water flow is expressed in liters/meter^3
Because of this we write condition:
V1/V2 = A2/A1 where A2 and A1 are sections of water stream.
let V1 and A1 be the speed and section of water stream at the end of pipe.
A2 = V1*A1/V2